• Title/Summary/Keyword: Fe particle size

Search Result 575, Processing Time 0.029 seconds

The study of elemental depth distribution at the Jinheung catchment sediment core (진흥제 퇴적물 시추코아시료의 깊이별 원소 축적 변화 연구)

  • Yoon, Yoon Yeol;Yang, Dong Yoon;Nahm, Wook Hyun;Cho, Soo Young;Lee, Kil Yong
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.45-49
    • /
    • 2006
  • Drilled sediment core was acquired from Jinheung catchment which was located at Jeollabuk-do Jeongeup city. Elements concentration variation were studied by neutron activation analysis using sediment core by divided 1 cm depth interval. The concentration of major element such as Na, K were increased but Fe was decrease with depth. Minimum elements concentration and particle size were observed at 17 cm depth. This depth was considered 1969 year which was great dry year recorded from the rain fall data and the sedimentation rate was calculated $0.197g{\cdot}cm^{-2}{\cdot}year^{-1}$.

Immunization of mice with chimeric protein-loaded aluminum hydroxide and selenium nanoparticles induces reduction of Brucella melitensis infection in mice

  • Tahereh Goudarzi;Morteza Abkar;Zahra Zamanzadeh;Mahdi Fasihi-Ramandi
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.4
    • /
    • pp.304-312
    • /
    • 2023
  • Purpose: Due to the many problems with commercially available vaccines, the production of effective vaccines against brucellosis is a necessity. The aim of this study was to evaluate the immune responses caused by the chimeric protein consisting of trigger factor, Bp26, and Omp31 (TBO) along with aluminum hydroxide (AH/TBO) and selenium (Se/TBO) nanoparticles (NPs) as adjuvants in mouse model. Materials and Methods: Recombinant antigen expression was induced in Escherichia coli BL21 (DE3) bacteria using IPTG (isopropyl-d-1-thiogalactopyranoside). Purification and characterization of recombinant protein was conducted through NiFe3O4 NPs, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Western blot. NP characteristics, including morphology and particle size, were measured in vitro. The recombinant TBO was loaded on to AH and Se NPs and were administered subcutaneously. After mice immunization, measurement of antibody titter and protection assay was performed. Results: The average sizes of AH and Se NPs were about 60 nm and 150 nm, respectively. The enzyme-linked immunosorbent assay results showed that the serum of mice immunized by subcutaneous injection with both nanovaccines produced significant immunoglobulin G (IgG) responses against the chimeric antigen. The results of TBO-specific IgG isotype (IgG2a/IgG1) analysis showed that both AH and Se NPs induced a type to T-helper immune response. In addition, the results of the challenge with the pathogenic strain of Brucella melitensis 16M showed that vaccinated mice with AH/TBO NPs indicated a higher reduction of bacterial culture than immunized mice with Se/TBO NPs and TBO alone. Conclusion: The results showed that AH NPs carrying chimeric antigen can be a promising vaccine candidate against brucellosis by producing protective immunity.

Characterization and Formation Mechanisms of Clogging Materials in Groundwater Wells, Mt. Geumjeong Area, Busan, Korea (부산 금정산 일대 지하수공내 공막힘 물질의 특징과 형성원인)

  • Choo, Chang-Oh;Hamm, Se-Yeong;Lee, Jeong-Hwan;Lee, Chung-Mo;Choo, Youn-Woo;Han, Suk-Jong;Kim, Moo-Jin;Cho, Heuy-Nam
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.67-81
    • /
    • 2012
  • The physical, chemical, and biological properties of clogging materials formed within groundwater wells in the Mt. Geumjeong area, Busan, Korea, were characterized. The particle size distribution (PSD) of clogging materials was measured by a laser analyzer. XRD, SEM, and TEM analyses were performed to obtain mineralogical information on the clogging materials, with an emphasis on identifying and characterizing the mineral species. In most cases, PSD data exhibited an near log-normal distribution; however, variations in frequency distribution were found in some intervals (bi-or trimodal distributions), raising the possibility that particles originated from several sources or were formed at different times. XRD data revealed that the clogging materials were mainly amorphous ironhydroxides such as goethite, ferrihydrite, and lapidocrocite, with lesser amounts of Fe, Mn, and Zn metals and silicates such as quartz, feldspar, micas, and smectite. Reddish brown material was amorphous hydrous ferriciron (HFO), and dark red and dark black materials were Fe, Mn-hydroxides. Greyish white and pale brown materials consisted of silicates. SEM observations indicated that the clogging materials were mainly HFO associated with iron bacteria such as Gallionella and Leptothrix, with small amounts of rock fragments. In TEM analysis, disseminated iron particles were commonly observed in the cell and sheath of iron bacteria, indicating that iron was precipitated in close association with the metabolism of bacterial activity. Rock-forming minerals such as quartz, feldspar, and micas were primarily derived from soils or granite aquifers, which are widely distributed in the study area. The results indicate the importance of elucidating the formation mechanisms of clogging materials to ensure sustainable well capacity.

Importance of Microtextural and Geochemical Characterizations of Soils on Landslide Sites (산사태지역 토층의 미세조직과 지화학적 특성의 중요성)

  • Kim Kyeong-Su;Choo Chang-Oh;Booh Seong-An;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.447-462
    • /
    • 2005
  • The purposes of this study are to evaluate and discuss the importance of geochemical properties of soil materials that play an important role in the occurrence of the landslide, using analyses of microtexture, particle size distribution, XRC, and FE-SEM equipped with energy dispersive spectrum on soils collected from landslide slopes of gneiss, granite and sedimentary rock areas. Soils from gneiss and granite areas where landslides took place have much clay content relative to those from non landslide areas, particularly pronounced in the granite area. Therefore the clay content is considered a sensitive factor on landslide. Clay minerals contained in soils are illite, chlorite, kaolinite and montmorillonite. Especially the content of clay minerals in soils from the Tertiary sedimentary rocks is highest, with abundant montmorillonite as expandable species. It is believed that this area was much vulnerable to landslide comparable to other areas because of its high content of monoorillonite, even though there might be weak precipitation. Since no conspicuous differentiation in mineralogy between the landslide area and non landslide area can be made, the occurrence of landslide may be influenced not by mineralogy, but by local geography and mechanical properties of soils. Geochemical information on weathering properties, mineralogy, and microtexture of soils is helpful to better understand the causes and patterns of landslide, together with engineering geological analyses.

A Study on the Material and Production Method of Bronze Casting Earthen Mold - Focusing on Earthen Mold Excavated in Dongcheon-dong, Gyungju - (청동주조 토제범(土製范)의 재질과 제작기법 연구 - 경주 동천동 출토 토제범을 중심으로 -)

  • Son, Da-nim;Yang, Hee-jae
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.4
    • /
    • pp.108-125
    • /
    • 2013
  • This study examined the actual reconstruction drawing, composite mineral, particle size and property test, fine organic matters, color differences and main ingredients of the earthen mold excavated in Dongcheon-dong, Gyungju. The cross-section of the inner mold and outer mold divides into inside (1st layer) and outside (2nd layer), with organic matters mixed outside. The cross-section has been altered due to heat and form removal agent. X-ray analysis revealed that the layer was made of minerals with high transmissivity and only quartz particles were observed through a polarizing microscope. The inside of cross-section in SEM observation identified enlarged air gap, with crack developed in the center, but no changes observed on the outside. The particle size of the composites is almost the same for the inner mold and outer mold and is silt clay loam. The ratio between silt clay and silt clay loam was about 2.7:1 and 2.9:1 respectively. In the property test, the density and absorption rate of inner mold and outer mold were similar, but porosity was different, with inner mold of 27.36% and outer mold of 31.09%. The color difference of cross-section seems to have been caused by the spread of soot on the 1st layer surface for removal of form or by the covering of ink to protect the 1st layer. Composite mineral analysis revealed the same composition for the inner mold and outer mold, except for the magnetite that was detected in the inner mold alone. As for the main ingredient analysis, the average content of $SiO_2$ was 71.64% and that of $Al_2O_3$ was 14.59%. As for the sub-ingredients, $Fe_2O_3$ was 4.51%, $K_2O$ 3.06%, $Na_2O$, MgO, CaO, $TiO_2$, $P_2O_5$ and MnO was less than 2%.

Study on Ti-doped LiNi0.6Co0.2Mn0.2O2 Cathode Materials for High Stability Lithium Ion Batteries (고안정성 리튬이온전지 양극활물질용 Ti 치환형 LiNi0.6Co0.2Mn0.2O2 연구)

  • Jeon, Young Hee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.120-132
    • /
    • 2021
  • Although the development of high-Nickel is being actively carried out to solve the capacity limitation and the high price of raw cobalt due to the limitation of high voltage use of the existing LiCoO2, the deterioration of the battery characteristics due to the decrease in structural stability and increase of the Ni content. It is an important cause of delaying commercialization. Therefore, in order to increase the high stability of the Ni-rich ternary cathod material LiNi0.6Co0.2Mn0.2O2, precursor Ni0.6Co0.2Mn0.2-x(OH)2/xTiO2 was prepared using a nanosized TiO2 suspension type source for uniform Ti substitution in the precursor. It was mixed with Li2CO3, and after heating, the cathode active material LiNi0.6Co0.2Mn0.2-xTixO2 was synthesized, and the physical properties according to the Ti content were compared. Through FE-SEM and EDS mapping analysis, it was confirmed that a positive electrode active material having a uniform particle size was prepared through Ti-substituted spherical precursor and Particle Size Analyzer and internal density and strength were increased, XRD structure analysis and ICP-MS quantitative analysis confirmed that the capacity was effectively maintained even when the Ti-substituted positive electrode active material was manufactured and charging and discharging were continued at high temperature and high voltage.

A Study on Hazard Classification by Metal Element analysis of Paints Containing Inorganic Pigment (무기안료를 함유한 도료의 금속 원소 분석에 의한 유해성 분류에 관한 연구)

  • Jeong-Hee Han;Do-Hee Lee;Na-Roo Lee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.3
    • /
    • pp.193-201
    • /
    • 2024
  • Objectives: Paints contain various types of metal substances. However, our review of MSDS (Material Safety Data Sheets) for paints found that their components were often kept secret or exact content information was otherwise not provided. We analyzed the metal elements in various inorganic pigment-based paints available in South Korea in this study and checked whether they contain hazardous metal substances as defined by the Occupational Safety and Health Acts. We investigated issues of health hazard classification related to the metal elements. The study is intended to contribute to strengthening the management of hazardous substances by suggesting improvements to MSDS. Methods: We randomly selected 19 samples that were predicted to contain hazardous inorganic pigments after reviewing MSDS among paints currently in use. The samples were analyzed using XRF (X-ray Fluorescence spectrometry), ICP_OES (Inductively Coupled Plasma-Optical Emission Spectroscopy) and SP-ICP-MS (Single Particle-ICP-Mass Spectroscopy). Results: The most common elements in the samples were Al (aluminum), Fe (iron), Ti (titanium), Ca (calcium), and Si (silica). One sample contained more lead than allowed by the limits. There were ten samples that could potentially contain nanoforms, seven samples that contained titanium dioxide, and six samples that contained complex inorganic color pigments (CICPs). Conclusions: Inorganic pigments in paints should be evaluated for hazards separately from other metallic compounds and reflected in the MSDS because they have different characteristics than other metallic compounds. These include particle size, crystal structure, and complex substances. The results of this study can be helpful for determining whether a paint contains sufficient hazardous metal compounds to affect its classification, and it can be a guideline for improving MSDS through comparative review and rationalization with the manufacturer's MSDS. This would make it possible to contribute to the management of chemical substances in the workplace through the proper MSDS disclosure of paints.

Photocatalytic Degradation of Rhodamine B Using Cd0.5Zn0.5S/ZnO Photocatalysts under Visible Light Irradiation (가시광선하에서 Cd0.5Zn0.5S/ZnO 광촉매를 이용한 로다민 B의 광분해 반응)

  • Lee, Hyun Jung;Jin, Youngeup;Park, Seong Soo;Hong, Seong Soo;Lee, Gun Dae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.356-361
    • /
    • 2015
  • $Cd_{0.5}Zn_{0.5}S/ZnO$ composite photocatalysts were synthesized using the precipitation method and characterized by XRD, UV-vis DRS, PL and FE-SEM. Photocatalytic activities of the materials were evaluated by measuring the degradation of rhodamine B under visible light irradiation. Contrary to ZnO, $Cd_{0.5}Zn_{0.5}S/ZnO$ materials absorb visible light as well as UV and their absorption intensities in visible region increased with increasing the $Cd_{0.5}Zn_{0.5}S$ amount. The increment in the $Cd_{0.5}Zn_{0.5}S$ content in $Cd_{0.5}Zn_{0.5}S/ZnO$ also leads to reducing the particle size and consequently increasing the specific surface area. $Cd_{0.5}Zn_{0.5}S/ZnO$ materials with the larger $Cd_{0.5}Zn_{0.5}S$ content showed the higher activity in the photocatalytic degradation of rhodamine B under visible light irradiation. Therefore, the heterojunction effect between $Cd_{0.5}Zn_{0.5}S$ and ZnO as well as the adsorption capacity seems to give important contributions to the photocatalytic activity of the $Cd_{0.5}Zn_{0.5}S/ZnO$.

Recovery of $\alpha$-iron from converter dust in a steel making factory -Utilization of the converter dust in a steel making factory- (제장소 전노 dust로부터 $\alpha$-장분말 회수에 관한 연구(II) -전노 dust의 이용에 관한 연구-)

  • Kim, Mi-Sung;Kim, Mahn;Cho, Moung-Ho;Oh, Jae-Hyun;Kim, Tae-Dong;Kim, Sung-Wan
    • Resources Recycling
    • /
    • v.3 no.2
    • /
    • pp.9-16
    • /
    • 1994
  • In this study, the grinding and wet cyclone process of the dust for the effective separation of high purity iron powder and iron oxide were investigated. The results obtained in this study can be summarized as follows: 1. By applying the wet cyclone technique for the iron powder(+200 mesh) produced from EC dust of the Kwangyang 2nd steel making factory, the iron powder of high content more than 99.76% of Fe was obtained with 47.66% yield at grinding time of 5 minutes by attritor. 2. The particle size distribution of the iron powder recovered from converter dust is quite simillar with the iron powder of sweden Hoganas Co.(W40.24, W40.29, W40.37, W40.37OX). 3. By using iron powder, copper ions are all adsorbed and removed in any concentration ranges of copper sulfate solution(Cu:100, 200, 300, 600 ppm).

  • PDF

Study of Composite Adsorbent Synthesis and Characterization for the Removal of Cs in the High-salt and High-radioactive Wastewater (고염/고방사성 폐액 내 Cs 제거를 위한 복합 흡착제 합성 및 특성 연구)

  • Kim, Jimin;Lee, Keun-Young;Kim, Kwang-Wook;Lee, Eil-Hee;Chung, Dong-Yong;Moon, Jei-Kwon;Hyun, Jae-Hyuk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • For the removal of cesium (Cs) from high radioactive/high salt-laden liquid waste, this study synthesized a highly efficient composite adsorbent (potassium cobalt ferrocyanide (PCFC)-loaded chabazite (CHA)) and evaluated its applicability. The composite adsorbent used CHA, which could accommodate Cs as well as other molecules, as a supporting material and was synthesized by immobilizing the PCFC in the pores of CHA through stepwise impregnation/precipitation with $CoCl_2$ and $K_4Fe(CN)_6$ solutions. When CHA, with average particle size of more than $10{\mu}m$, is used in synthesizing the composite adsorbent, the PCFC particles were immobilized in a stable form. Also, the physical stability of the composite adsorbent was improved by optimizing the washing methodology to increase the purity of the composite adsorbent during the synthesis. The composite adsorbent obtained from the optimal synthesis showed a high adsorption rate of Cs in both fresh water (salt-free condition) and seawater (high-salt condition), and had a relatively high value of distribution coefficient (larger than $10^4mL{\cdot}g^{-1}$) regardless of the salt concentration. Therefore, the composite adsorbent synthesized in this study is an optimized material considering both the high selectivity of PCFC on Cs and the physical stability of CHA. It is proved that this composite adsorbent can remove rapidly Cs contained in high radioactive/high salt-laden liquid waste with high efficiency.