DOI QR코드

DOI QR Code

Study on Ti-doped LiNi0.6Co0.2Mn0.2O2 Cathode Materials for High Stability Lithium Ion Batteries

고안정성 리튬이온전지 양극활물질용 Ti 치환형 LiNi0.6Co0.2Mn0.2O2 연구

  • Jeon, Young Hee (Department of Cell Development) ;
  • Lim, Soo A (Department of Pharmaceutical Engineering, Hoseo University Asan)
  • 전용희 (에너테크(주) 셀개발팀) ;
  • 임수아 (호서대학교, 제약공학과)
  • Received : 2021.08.07
  • Accepted : 2021.11.08
  • Published : 2021.11.30

Abstract

Although the development of high-Nickel is being actively carried out to solve the capacity limitation and the high price of raw cobalt due to the limitation of high voltage use of the existing LiCoO2, the deterioration of the battery characteristics due to the decrease in structural stability and increase of the Ni content. It is an important cause of delaying commercialization. Therefore, in order to increase the high stability of the Ni-rich ternary cathod material LiNi0.6Co0.2Mn0.2O2, precursor Ni0.6Co0.2Mn0.2-x(OH)2/xTiO2 was prepared using a nanosized TiO2 suspension type source for uniform Ti substitution in the precursor. It was mixed with Li2CO3, and after heating, the cathode active material LiNi0.6Co0.2Mn0.2-xTixO2 was synthesized, and the physical properties according to the Ti content were compared. Through FE-SEM and EDS mapping analysis, it was confirmed that a positive electrode active material having a uniform particle size was prepared through Ti-substituted spherical precursor and Particle Size Analyzer and internal density and strength were increased, XRD structure analysis and ICP-MS quantitative analysis confirmed that the capacity was effectively maintained even when the Ti-substituted positive electrode active material was manufactured and charging and discharging were continued at high temperature and high voltage.

기존 LiCoO2의 고전압 사용의 제약에 따른 용량적 한계와 코발트 원료의 높은 가격을 해결하기 위하여 high-Nickel에 대한 개발이 활발히 진행되고 있지만 Ni 함량의 증가에 따른 구조적 안정성의 저하에 의한 전지 특성의 저하는 상용화를 지연시키는 중요한 원인이 되고 있다. 이에 Ni-rich 삼성분계 양극소재 LiNi0.6Co0.2Mn0.2O2의 고안정성을 높이고자 전구체에 균일한 이종원소 Ti를 치환을 위해서 나노크기의 TiO2 서스펜젼 형태 소스를 사용하여 전구체 Ni0.6Co0.2Mn0.2-x(OH)2/xTiO2를 제조하였다. Li2CO3와 혼합하고, 열처리 후 양극활물질 LiNi0.6Co0.2Mn0.2-xTixO2 합성하여 Ti 함량에 따른 물리적 특성을 비교하였다. Field Emission Scanning electron Microscope(FE-SEM) 및 Energy Dispersive Spectroscopy (EDS) mapping 분석을 통해 Ti 치환된 구형의 전구체와 입자 크기 측정을 통해 균일한 입자크기를 가지는 양극 활물질 제조를 확인하였고, 내부치밀도와 강도가 증가함을 확인 하고, X-ray Diffractometry (XRD) 구조 분석과 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 정량분석을 통해 Ti 치환된 양극활물질 제조 및 고온, 고전압에서 충·방전을 지속하더라도 효과적으로 용량이 유지됨을 확인하였다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1G1A1010154).

References

  1. 정인수, 김은주, 박규순, 이상원, 조세호, 에너지 저장용 탄소복합재의 개발 동향 및 시장 전망. KISTI, 1-124 (2014).
  2. J. Shim, R. Kostecki, T. Richardson, X. Song, K.A. Striebel. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J. Power Sources, 112(1), 222-230, (2002). https://doi.org/10.1016/S0378-7753(02)00363-4
  3. B. Perla, Y.W. Balbuena, Lithium-ion Batteries: Solid-electrolyte Interphase: Imperial college press (2004).
  4. G.-A. Nazri and G. Pistoia (ed), Lithium Batteries Solid-Electrolyte Interphase (2004).
  5. KIST, 리튬 2차 전지 양극소재 표면개질기술 현황, 1-147, (2005).
  6. B. Perla, Balbuena, Y. Wang, Lithium-ion Batteries: Solid-electrolyte Interphase, 424, (2004).
  7. K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough. LixCoO2 (0 https://doi.org/10.1016/0025-5408(80)90012-4
  8. T. Ohzuku and A. Ueda, Solid-State Redox Reactions of LiCoO2 (R3m) for 4 Volt Secondary Lithium Cells, J. Electrochem. Soc., 141, 2972 (1994). https://doi.org/10.1149/1.2059267
  9. N. Yabuuchi, T. Ohzuku, Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries, J. Power Sources, 119-121, 171-174 (2003). https://doi.org/10.1016/S0378-7753(03)00173-3
  10. N. Yabuuchi, T. Ohzuku, Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries, J. Power Sources, 119-121, 171-174 (2003). https://doi.org/10.1016/S0378-7753(03)00173-3
  11. M.H. Lee, Y.J. Kang, S.T. Myung and Y.K. Sun, Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation, Electrochimica Acta, 50, 939-948 (2004). https://doi.org/10.1016/j.electacta.2004.07.038
  12. S.H. Park, C.S. Yoon, S.G. Kang, H.S. Kim, S.I. Moon, Y.K. Sun, Synthesis and structural characterization of layered Li[Ni1/3Co1/3Mn1/3]O-2 cathode materials by ultrasonic spray pyrolysis method. Electrochimica Acta, 49(4), 557-63 (2004). https://doi.org/10.1016/j.electacta.2003.09.009
  13. S.-K. Hu T.C. Chou, B.-J. Hwang, G. Ceder. Effect of Co content on performance of LiAl1/3-xCoxNi1/3Mn1/3O2 compounds for lithium-ion batteries. J. Power Sources, 160(2), 1287-1293 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.005
  14. B. Ammundsen, J. Desilvestro, T. Groutso, D. Hassell, J. B. Metson, E. Regan, R. Steiner, P. J. Pickering, Formation and Structural Properties of Layered LiMnO[sub 2] Cathode Materials. J. Electrochem. Soc., 147(11), 4078 (2000). https://doi.org/10.1149/1.1394022
  15. M.M. Thackeray, A. de Kock, W.I.F David, Synthesis and structural characterization of defect spinels in the lithium-manganese-oxide system. Mat. Res. Bull., 28(10), 1041-1049 (1993). https://doi.org/10.1016/0025-5408(93)90142-Z
  16. Y.S. Lee, M. Yoshio, Preparation of Orthorhombic LiMnO[sub 2] Material by Quenching. Electrochem. Solid-State Letters, 4(10), A166 (2001). https://doi.org/10.1149/1.1399879
  17. Y. Xia, Y. Zhou, M. Yoshio, Capacity Fading on Cycling of 4 V Li/LiMn2O4 Cells. J. Electrochem. Soc., 144(8), 2593-600 (1997). https://doi.org/10.1149/1.1837870
  18. R.V. Chebiam, A.M. Kannan, F. Prado, A. Manthiram, Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries. Electrochem. Comm., 3(11), 624-627 (2001). https://doi.org/10.1016/S1388-2481(01)00232-6
  19. Y. Xia, H. Noguchiand and M. Yoshio, J. Solid State Chem., 119, 335 (1997).
  20. S. I. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, A. Yamada, Experimental visualization of lithium diffusion in LixFePO4. Nat. Mat., 7(9), 707-11 (2008). https://doi.org/10.1038/nmat2251
  21. P.P Prosini, M. Lisi, D. Zane, M. Pasquali, Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ion. 148(1-2), 45-51 (2002). https://doi.org/10.1016/S0167-2738(02)00134-0
  22. S. Verma, S. Kumar, R. Gokhale, D.J. Burgess, Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Int. J. Pharmaceutics, 2011, 406(1-2), 145-52. https://doi.org/10.1016/j.ijpharm.2010.12.027
  23. S. H. Kang, J. B. Goodenough, and L. K. Rabenberg, Effect of ball-milling on 3 V capacity of lithium manganese oxospinel cathodes. Chem. Mater., 13, 1758-1764 (2001). https://doi.org/10.1021/cm000920g
  24. U. Rokakuho, X-ray diffraction analysis, Ban Do publishing company, 320 (1993).