• Title/Summary/Keyword: Fe nano-particles

Search Result 172, Processing Time 0.029 seconds

Preparation of FeAl nanopowders by Plasma Arc Discharge Process (플라즈마 아크방전(PAD)법으로 제조된 FeAl 나노분말 특성)

  • Park Woo-Young;Youn Cheol-Su;Yu Ji-Hun;Oh Young-Woo;Choi Chul-Jin
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.522-527
    • /
    • 2004
  • Nano sized FeAl intermetallic particles were successfully synthesized by plasma arc discharge pro-cess. The synthesized powders shouted core-shell structures with the particle size of 10-20 nm. The core was metallic FeAl and shell was composed of amorphous $AI_{2}O_{3}\;and\;a\;little\;amount\;of\;metallic\;Fe_{3}O_{4}.$ Because of the difference of Fe and Al vapor pressure during synthesis, the Al contents in the nanoparticles depended on the Al contents of master alloy.

Fabrication and Magnetic Properties of Nanostructured Fe-Co Alloy Powder (나노 구조 Fe-Co 합금분말의 제조 및 자성특성)

  • 이백희;안봉수;김대건;김영도
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.182-188
    • /
    • 2002
  • Conventional Fe-Co alloys are important soft magnetic materials that have been widely used in industry. Compared to its polycrystalline counterpart, the nanostructured materials have showed superior magnetic properties, such as higher permeability and lower coercivity due to the single domain configuration. However, magnetic properties of nanostructured materials are affected in complicated manner by their microstructure such as grain size, internal strain and crystal structure. Thus, studies on synthesis of nanostructured materials with controlled microstructure are necessary for a significant improvement in magnetic properties. In the present work, starting with two powder mixtures of Fe and Co produced by mechanical alloying (MA) and hydrogen reduction process (HRP), differences in the preparation process and in the resulting microstructural characteristics will be described for the nano-sized Fe-Co alloy particles. Moreover, we discuss the effect of the microstructure such as crystal structure and grain size of Fe-Co alloys on the magnetic properties.

Preparation of Nano-sized Zirconia Powders by the Impregnation Method (함침법에 의한 지르코니아 나노 분말의 합성)

  • Han, Cheong-Hwa;Kim, Soo-Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.454-460
    • /
    • 2012
  • The nano-sized zirconia powders were synthesized in an impregnation method using pulp and $ZrOCl_2{\cdot}8H_2O$ as an initial material. The synthesized powders were characterized by XRD and FE-SEM. The particle size of the powder was controlled by preparation conditions, such as drying temperature and time. As a result of the various drying and calcination conditions, 30~50 nm sized homogeneous zirconia particles were obtained at $800^{\circ}C$ for 1 h. Crystallization and the rapid growth of particles were accelerated with increasing calcination temperature and time. Tetragonal phase generated below $800^{\circ}C$ were transferred to monoclinic phase with increasing calcination temperature and time. Moreover, above $800^{\circ}C$, heat treatment time had very large influence on the particle growth, and the change of drying condition also had large influence on the growth of a crystal.

Microstructure and Properties of Nano-Sized Ni-Fe Alloy Dispersed Al2O3 Composites (Ni-Fe 합금입자 분산 Al2O3 나노복합재료의 미세조직 및 특성)

  • 남궁석;정재영;오승탁;이재성;이홍재;정영근
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.161-166
    • /
    • 2002
  • Processing and properties of $Al_2O_3$ composites with Ni-Fe content of 10 and 15 wt% were investigated. Homogeneous powder mixtures of $Al_2O_3$/Ni-Fe alloy were prepared by the solution-chemistry route using $Al_2O_3$, $Ni(NO_3)_2{\cdot}6H_2O$ and $Fe(NO_3)_3{\cdot}9H_2O$ powders. Microstructural observation of composite powder revealed that Ni-Fe alloy particles with a size of 20nm were homogeneously dispersed on $Al_2O_3$ powder surfaces. Hot-pressed composites showed enhanced fracture toughness and magnetic response. The properties are discussed based on the observed microstructural characteristics.

Preparation and characterization of magnetic nanoparticles with two kinds of core/shell structures (핵/껍질 구조를 가진 두 종류의 자기 나노입자의 제조와 특성비교)

  • 고영재;손인호;김영국;동성용;이근진;박규섭
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.87-92
    • /
    • 2001
  • Magnetic Fe-Co(C) nanocapsules and Fe-Co nanoparticles were prepared by arc-discharge in two kinds of atmospheres, i.e. methane and a mixture of ($H_2$+Ar), respectively. Characterization and magnetic properties of this two kinds of ultrafine particles were investigated systematically by means of X-ray diffraction, Mssbauer spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, energy disperse spectroscopy analysis, chemical analysis, oxygen determination and magnetization measurement. Effects of carbon element, decomposed from a methane atmosphere in carbon arc process, on phase structures, magnetic states and surface characterization were studied in comparison to that of Ar element. Two ultrafine particles showed a little difference in the weight ratio of (Fe/co) and the size for Fe-Co nanoparticles was about two times bigger than Fe-Co(C) nanocapsules. The saturation magnetization of Fe-Co (C) nanocapsules was about 8% higher than that of Fe-Co nanoparticles while their phase constitutions were similar. Although no carbon could be detected by XRD measurement because of extremely thin shells on the surfaces of the cores, it is still believed that they are carbon and oxygen layers.

  • PDF

Effects of Ga Substitution on Crystallographic and Magnetic Properties of Co Ferrites

  • Chae, Kwang Pyo;Choi, Won-Ok;Kang, Byung-Sub;Lee, Young Bae
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.26-30
    • /
    • 2015
  • The crystallographic and magnetic properties of gallium-substituted cobalt ferrite ($CoGa_xFe_{2-x}O_4$) were investigated. The new material was synthesized using conventional ceramic methods, with gallium substituted for ferrite in the range of x = 0.0 to 1.0, in steps of 0.2. X-ray diffraction and M$\ddot{o}$ssbauer spectroscopy were used to confirm the presence of crystallized particles in the $CoGa_xFe_{2-x}O_4$ ferrite powders. All of the samples exhibited a single phase with a spinel structure, and the lattice parameters decreased as the gallium content increased. The particle size of the samples also decreased as gallium increased. For $x{\leq}0.4$, the M$\ddot{o}$ssbauer spectra of $CoGa_xFe_{2-x}O_4$ could be fitted with two Zeeman sextets, which are the typical spinel ferrite spectra of $Fe^{3+}$ with A- and B-sites. However, for $x{\geq}0.6$, the M$\ddot{o}$ssbauer spectra could be fitted with two Zeeman sextets and one doublet. The variation in the M$\ddot{o}$ssbauer parameters and the absorption area ratio indicated a cation distribution of $(Co_{0.2-0.2x}Ga_xFe_{0.8-0.6x})[Co_{0.8+0.2x}Fe_{1.2-0.4x}]O_4$, and the magnetic behavior of the samples suggested that the increase in gallium content led to a decrease in the saturation magnetization and in the coercivity.

Structural Analysis of Conductive Polypyrroles Synthesized in an Ionic Liquid

  • Song, Eun-Ah;Jung, Woo-Gwang;Ihm, Dae-Woo;Kim, Jin-Yeol
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1009-1011
    • /
    • 2009
  • Nano-structured conducting polypyrroles were synthesized in the ionic liquids (ILs) based on 1-alkyl-3-methylimidazolium family with tetrachloroferrate as an anion ($C_n\;mim\;[FeCl_4]\;with\;n\;=\;4,\;8,\;and\;12$). The polypyrrole nanostructures synthesized in ILs were formed as spherical shapes. For ionic liquids with alkyl side chain length $C_4,\;C_4\;mim\;[FeCl_4]$, the size of particles was ranged around 60-nm with a relatively narrow size distribution. As the length of alkyl chain increases, the particle sizes become larger and their distributions become wider. The self-assembled local structures in the solvent ionic liquids are likely to serve as templates of highly organized nano-structured polymers. The length of the alkyl chain in ionic liquids seems to affect these local structures.

Fe-Based Nano-Structured Powder Reinforced Zr-Based Bulk Metallic Glass Composites by Powder Consolidation

  • Cho, Seung-Mok;Han, Jun-Hyun;Lee, Jin-Kyu;Kim, Yu-Chan
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.504-509
    • /
    • 2009
  • The Zr-based bulk metallic glass matrix composites of a mixture of gas-atomized metallic glass powders and Fe-based nanostructured powders were fabricated by spark plasma sintering. The Fe-based nanostructured powders adopted for the enhancement of plasticity were well distributed in the matrix after consolidation, and the matrix remains as a fully amorphous phase. The successful consolidation of metallic glass matrix composite with high density was attributed to viscous flow in the supercooled liquid state during spark plasma sintering. Unlike other amorphous matrix composites, in which improved ductility could be obtained at the expense of their strength, the developed composite exhibited improvement both in strength and ductility. The ductility improvement in the composite was considered to be due to the formation of multiple shear bands under the presence of the Fe-based nanostructured particles.

Characterization of Thermal Spray Coating Layers of Nano Crystalline TiO2 for Photocatalyst (광촉매용 나노 TiO2 용사코팅층 특성)

  • Lee, Soo W.;Kim, Hak-Soo;Zeng, Yi;Hockey, Bernad
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.809-813
    • /
    • 2002
  • Commercial nano crystalline $TiO_2$ powders were used to characterize photocatalyst, using thermal spray coating technique. The microstructure of coating layers were examined by SEM, FE-SEM and TEM. Also the cross sectional areas of TiO$_2$ coating layers were observed by SEM. The phases were analyzed by X-ray diffraction methed. Surface roughness and hardness were measured. It was found that phase transformation from anatase to rutile occurred, and the melted splats are all rutile, and unmeted nano particles were anatase. These unmelted anatase phase may enhance te play a role of photocatalyst.

The Microstructure and Magnetic Properties of YIG Powders Synthesized by a Coprecipitaion and a Sonochemical Process

  • Hong, Seong-Min;Kim, Yong-Il;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.165-167
    • /
    • 2009
  • Nano-sized Yttrium iron garnet (YIG;$Y_3Fe_5O_{12}$) particles have been synthesized by using coprecipitation and a heat treatment process. The YIG particles were made using a nitrate or a chloride salt solution. The pH concentration of the solution was fixed at 12. Spherical shaped YIG particles were made with a size of about 20 nm. The magnetization value of the particles was smaller than the bulk value but their coercive field showed a high value.