• 제목/요약/키워드: Fe mineralization

검색결과 137건 처리시간 0.024초

Application of Electron Energy Loss Spectroscopy - Spectrum Imaging (EELS-SI) for Microbe-mineral Interaction (생지구화학적 광물변이작용 연구에서 전자에너지 손실 분광 분석 - 스펙트럼 영상법의 활용)

  • Yang, Kiho;Park, Hanbeom;Kim, Jinwook
    • Journal of the Mineralogical Society of Korea
    • /
    • 제32권1호
    • /
    • pp.63-69
    • /
    • 2019
  • The oxidation states of structural Fe in minerals reflect the paleo-depositional redox conditions for the biologically or abiotically induced mineral formation. Particularly, nano-scale analysis using high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) is necessary to identify evidence for the microbial role in the biomineralization. HRTEM-EELS analysis of oxidation states of structural Fe and carbon bonding structure differentiate biological factors in mineralization by mapping the distribution of Fe(II)/Fe(III) and source of organic C. HRTEM-EELS technique provides geomicrobiologists with the direct nano-scale evidence of microbe-mineral interaction.

A Preliminary Study on the Igneous Layering and Concentration of Fe-Ti Oxide Minerals within Amphibolite in Soyeonpyeong Island (소연평도 각섬암 내 화성기원 층상구조와 Fe-Ti 산화광물의 농집에 관한 예비연구)

  • Kim, Eui-Jun
    • Economic and Environmental Geology
    • /
    • 제50권5호
    • /
    • pp.375-387
    • /
    • 2017
  • Amphibolite-hosted Fe-Ti mineralization at the Soyeonpyeong Island, located in central western part of the Korean Peninsula is a typical orthomagmatic Fe-Ti oxide deposit in South Korea. The amphibolite intruded into NW-SE trending Precambrian metasedimentary rocks. Lower amphibolite is characterized by igneous layering, consisting of feldspar-dominant and amphibole-Fe-Ti oxide-dominant layers. The igneous layering shows complicated and/or sharp contact. In contrast, upper amphibolite has a more complicated lithofacies (garnet-bearing, coarser, and schistose), and massive Fe-Ti oxide ore alternates with schistose amphibolite. NS- and EW-trending fault systems lead to redistribute upper amphibolite-hosted Fe-Ti orebody and igneous layering of lower amphibolite, respectively. The whole-rock compositions of amphibolite and Fe-Ti oxide ore reflect their constituent minerals. Amphibolite shows significantly positive Eu anomalies whereas Fe-Ti oxide ore has weak negative Eu anomalies. Plagioclase (Andesine to oligoclase) and Fe-Ti oxide minerals have constant composition regardless of their distribution. Amphibole has a compositionally variable but it doesn't reflect the chemical evolution. Mineral compositions within individual layers and successive layers are relatively constant not showing any stratigraphic evolution. This suggests that there are no successive injections of Fe-rich magma or assimilation with Fe-rich country rocks. Contrasting Eu anomalies between amphibolite and Fe-Ti oxide ore also suggest that extensive plagioclase fractionation during early crystallization stage cause increase in $Fe_2O_3/FeO$ ratio and overall Fe contents in the residual magma. Thus, Fe-rich residual liquids may migrate at the upper amphibolite by filter pressing mechanism and then produce sheeted massive Fe-Ti mineralization during late fractional crystallization.

Gold Mineralization of the Youngbogari Mine, Youngdong Area (영동지역 영보가리 광산의 금광화 작용)

  • Heo, Chul-Ho;Chi, Se-Jung
    • Journal of the Mineralogical Society of Korea
    • /
    • 제20권2호
    • /
    • pp.115-124
    • /
    • 2007
  • Electrum-sulfide mineralization of the Youngbogari mine area occurred in two stages of massive quartz veins that fill the fractures along the fault/shear zones in the Precambrian gneiss. Ore mineralogy is simple, consisting of arsenopyrite $(31.4{\sim}33.4atom.%As)$, pyrite, sphalerite $(4.1{\sim}17.6mole%FeS)$, galena, chalcopyrite, argentite, and electrum. Electrum $(60.3{\sim}87.6atom.%Ag)$ is associated with galena, chalcopyrite and late sphalerite infilling the fractures in quartz and sulfides. Fluid inclusion data show that ore mineralization was formed from $H_2O-CO_2-CH_4-NaCl$ fluids $(X_{CO2+CH4}=0.0\;to\;0.2)$ with low salinities (0 to 10wt.% eq. NaCl) at temperatures between $200^{\circ}\;and\;370^{\circ}C$. Gold-silver mineralization occurred later than the base-metal sulfide deposition, at temperatures near $250^{\circ}C$ and was probably a result of cooling and decreasing sulfur fugacity caused by sulfide precipitation and/or $H_2S$ loss through fluid unmixing.

Ore Minerals and Geochemical Environments at the Jinwon Pb-Zn Deposit (진원 연-아연 광상의 광석광물과 생성환경)

  • Cho, Young-Ki;Lee, In-Gyeong;Choi, Sang-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • 제19권4호
    • /
    • pp.337-346
    • /
    • 2006
  • The Jinwon Pb-Zn deposit is located within the Precambrian Youngnam Massif. Ore mineralization at the Jinwon deposit occurred in quartz veins that filled fractures in the Hongjesa granite. Mineral paragenesis can be divided into two stages(stage I and II). Stage I, at which the precipitation of major ore minerals occurred, is further divided into two substages with paragenetic time based on minor fractures and discernible mineral assemblages: substage la is characterized by pyrite, arsenopyrite ($28.4{\sim}30.3$ atomic % As), pyrrhotite, magnetite, chalcopyrite, sphalerite ($13.1{\sim}16.0$ mole % FeS) assemblages; substage $I_a$ is represented by main precipitation of Zn, Pb minerals and is characterized by sphalerite ($15.1{\sim}19.0$ mole % FeS), galena, miargyrite, argentile assemblages. Stage II is economically barren quartz veins. Thermodynamics study is used to estimate changes in chemical conditions of the hydrothermal fluids during stage I mineralization, the main ore deposition period at the Jinwon hydrothermal system. The range of estimated sulfur fugacity ($fs_2$) was from $10^{-7}\;to\;10^{-16}$ atm and oxygen fugacity ($fo_2$) was in the range of $10^{-32.8}{\sim}10^{-38.5} atm$. Carbon dioxide fugacity ($fco_2$) was $<10^{-0.6} atm$.

Skarn Evolution and Fe-(Cu) Mineralization at the Pocheon Deposit, Korea (한국 포천 광상의 스카른 진화과정 및 철(-동)광화작용)

  • Go, Ji-Su;Choi, Seon-Gyu;Kim, Chang Seong;Kim, Jong Wook;Seo, Jieun
    • Economic and Environmental Geology
    • /
    • 제47권4호
    • /
    • pp.335-349
    • /
    • 2014
  • The Pocheon skarn deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, occurs at the contact between the Cretaceous Myeongseongsan granite and the Precambrian carbonate rocks, and is also controlled by N-S-trending shear zone. The skarn distribution and mineralogy reflects both structural and lithological controls. Three types of skarn formations based on mineral assemblages in the Pocheon skarn exist; a sodiccalcic skarn and a magnesian skarn mainly developed in the dolostone, and a calcic skarn developed in the limestone. Iron mineralization occurs in the sodic-calcic and magnesian skarn zone, locally superimposed by copper mineralization during retrograde skarn stage. The sodic-calcic skarn is composed of acmite, diopside, albite, garnet, magnetite, maghemite, anhydrite, apatite, and sphene. Retrograde alteration consists of tremolite, phlogopite, epidote, sericite, gypum, chlorite, quartz, calcite, and sulfides. Magnesian skarn mainly consists of diopside and forsterite. Pyroxene and olivine are mainly altered to tremolite, with minor phlogopite, talc, and serpentine. The calcic skarn during prograde stage mainly consists of garnet, pyroxene and wollastonite. Retrograde alteration consists of epidote, vesuvianite, amphibole, biotite, magnetite, chlorite, quartz, calcite, and sulfides. Microprobe analyses indicate that the majority of the Pocheon skarn minerals are enriched by Na-Mg composition and have high $Fe^{3+}/Fe^{2+}$, $Mg^{2+}/Fe^{2+}$, and $Al^{3+}/Fe^{2+}$ ratios. Clinopyroxene is acmitic and diopsidic composition, whereas garnet is relatively grossular-rich. Amphiboles are largely of tremolite, pargasite, and magnesian hastingsite composition. The prograde anhydrous skarn assemblages formed at about $400^{\circ}{\sim}500^{\circ}C$ in a highly oxidized environment ($fO_2=10^{-23}{\sim}10^{-26}$) under a condition of about 0.5 kbar pressure and $X(CO_2)=0.10$. With increasing fluid/rock interaction during retrograde skarn, epidote, amphibole, sulfides and calcite formed as temperature decreased to approximately $250^{\circ}{\sim}400^{\circ}C$ at $X(CO_2)=0.10$.

Magnetite and Scheelite-Bearing Skarns in Ulsan Mine, Korea (울산 광산의 철-텅그스텐 스카른화작용)

  • Choi, Seon-Gyu;Imai, Naoya
    • Economic and Environmental Geology
    • /
    • 제26권1호
    • /
    • pp.41-54
    • /
    • 1993
  • The Ulsan Fe-W deposit, which can be classified as a calcareous skarn deposit, is represented by ore pipe consisting principally of magnetite and lesser amounts of scheelite with minor sulphides, sulphosaits, arsenides, sulpharsenides, etc. At Ulsan mine, metasomatic processes of skarn growth may be divided broadly into two stages based on the paragenetic sequence of calc-silicate minerals and their chemical composition; early and late skarn stages. Early stage has started with the formation of highly calcic assemblages of wollastonite, diopsidic clinopyroxene and nearly pure grossular, which are followed by the formation of clinopyroxenes with salite to ferrosalite composition and grandite garnets with intermediate composition. Based on these calc-silicate assemblages, the temperatures of early skarn formations have been in the ranges of $550^{\circ}$ to $450^{\circ}$. The calc-silicate assemblages formed during the earlier half period of late skarn stage show the enrichment of notable iron and slight manganese, and the depletion of magnesium; clinopyroxenes are hedenbergitic, and grandite garnets are andraditic. The formation temperatures during this skarn stage are inferred to have been in the range of $430^{\circ}$ to $470^{\circ}C$ at low $X_{CO_2}$ by data from fluid inclusions of late andraditic garnets. The later half period of late skarn stage is characterized by the hydrous alteration of pre-existing minerals and the formation of hydrous silicates. The main iron-tungsten mineralization representing prominent deposition of magnetite immediately followed by minor scheelite impregnation has taken place at the middle of early skarn stage, while complex polymetallic mineralization has proceeded during and after the late skarn stage. Various metals and semimetals of Fe, Ni, Co, Cu, Zn, As, Mo, Ag, In, Sn, Sb, Te, Pb and Bi have been in various states such as native metal, sulphides, arsenides, sulphosaits, sulpharsenides and tellurides.

  • PDF

Geology, Mineralization, and Age of the Pocheon Fe(-Cu) Skarn Deposit, Korea (한국 포천 철(-동) 스카른 광상의 지질, 광화작용 및 생성연대)

  • Kim, Chang Seong;Go, Ji Su;Choi, Seon-Gyu;Kim, Sang-Tae
    • Economic and Environmental Geology
    • /
    • 제47권4호
    • /
    • pp.317-333
    • /
    • 2014
  • The Pocheon iron (-copper) deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, genetically remains controversial. Previous researchers advocated a metamorphosed (-exhalative) sedimentary origin for iron enrichment. In this study, we present strong evidences for skarnification and Fe mineralization, spatially associated with the Myeongseongsan granite. The Pocheon deposit is composed of diverse carbonate rocks such as dolostone and limestone which are partially overprinted by various hydrothermal skarns such as sodic-calcic, calcic and magnesian skarn. Iron (-copper) mineralization occurs mainly in the sodic-calcic skarn zone, locally superimposed by copper mineralization during retrograde stage of skarn. Age data determined on phlogopites from retrograde skarn stage by Ar-Ar and K-Ar methods range from $110.3{\pm}1.0Ma$ to $108.3{\pm}2.8Ma$, showing that skarn iron mineralization in the Pocheon is closely related to the shallow-depth Myeongseongsan granite (ca. 112 Ma). Carbon-oxygen isotopic depletions of carbonates in marbles, diverse skarns, and veins can be explained by decarbonation and interaction with an infiltrating hydrothermal fluids in open system ($XCO_2=0.1$). The results of sulfur isotope analyses indicate that both of sulfide (chalcopyrite-pyrite composite) and anhydrites in skarn have very high sulfur isotope values, suggesting the $^{34}S$ enrichment of the Pocheon sulfide and sulfate sulfur was derived from sulfate in the carbonate protolith. Shear zones with fractures in the Pocheon area channeled the saline, high $fO_2$ hydrothermal fluids, resulting in locally developed intense skarn alteration at temperature range of about $500^{\circ}$ to $400^{\circ}C$.

Copper Mineralization in the Haman-Gunbuk Area, Gyeongsangnamdo-Province: Fluid Inclusion and Stable Isotope Study (경상남도 함안-군북지역의 동광화작용: 유체포유물 및 안정동위원소 연구)

  • 허철호;윤성택;최상훈;최선규;소칠섭
    • Economic and Environmental Geology
    • /
    • 제36권2호
    • /
    • pp.75-87
    • /
    • 2003
  • The Haman-Gunbuk mineralized area is located within the Cretaceous Gyeongsang Basin along the southeastern part of the Korean peninsula. Major ore minerals, magnetite, scheelite, molybdenite and chalcopyrite, together with base-metal sulfides and minor sulfosalts, occur in fissure-filling tourmaline, quartz and carbonates veins contained within Cretaceous sedimentary and volcanic rocks anu/or granodiorite (118{\pm}$3.0 Ma). The ore and gangue mineral paragenesis can be divided into three distinct stages: Stage 1, tourmaline+quartz+Fe-Cu ore mineralization; Stage II, quartz+sulfides+sulfosalts+carbonates; Stage 111, barren calcite. Earliest fluids are recorded in stage I and early por-tions of stage II veins as hypersaline (35~70 equiv. wt.% NaCl+KCl) and vapor-rich inclusions which homogenize from ~30$0^{\circ}C$ to $\geq$50$0^{\circ}C$. The high-salinity fluids are complex chloride brines with significant concentrations of sodium, potassium, iron, copper, and sulfur, though sulfide minerals are not associated with the early mineral assemblage produced by this fluid. Later solutions circulated through newly formed fractures and reopened veins, and are recorded as lower-salinity(less than ~20 equiv. wt.% NaCl) fluid inclusions which homogenize primarily from ~200 to 40$0^{\circ}C$. The oxygen and hydrogen isotopic compositions of fluid in the Haman-Gunbuk hydrothermal system represents a progressive shift from magmatic-hydrothermal dominance during early mineralization stage toward meteoric-hydrothermal dominance during late mineralization stage. The earliest hydrothermal fiuids to circu-late within the granodiorite stock localiring the ore body at Haman-Gunbuk could have exsolved from the crystal-lizing magma and unmixed into hypersaline liquid and $H_2O$-NaCl vapor. As these magmatic fluids moved throughfractures, tourmaline and early Fe, W, Mo, Cu ore mineralization occurred without concomitant deposition of othersulfides and sulfosalts. Later solutions of dominantly meteoric origin progressively formed hypogene copper and base-metal sulfides, and sulfosalt mineralization.

Chemical Composition of Sphalerite Relating to Mineralization at the Tongyoung mine, Korea (통영광산산(統營鑛山産) 섬아연석(閃亞鉛石)의 화학조성(化學組成))

  • Kim, Moon Young;Shin, Hong Ja
    • Economic and Environmental Geology
    • /
    • 제22권2호
    • /
    • pp.103-115
    • /
    • 1989
  • The Tongyoung deposits are epithermal gold and silver bearing quartz-rhodochrosite vein type deposits of late Cretaceous. They occurs in the andesite and tuff breccia member called Gyeongsang basin. Four mineralizations can be distinguished at the mine based on macrostructures. From earlist stage to lastest stage they are: stage I, base-metal quartz vein; stage II, rhodochrosite vein (IIA) and Pb-Zn vein (IIB); stage III, barren quartz vein; stage IV, calcite-ankeritic rhodochrosite veins. Gold and silver mineralizations occur predominantly in the stage I and IIB. Electrum is closely associated with galena, sphalerite and pyrite, and has chemical compositions of 50.98-64.05 atom % Ag. Sphalerite contains 2.09-5.05 mol % FeS and 0.34-2.01 mol % MnS in the stage I, and 2.01-3.41 mol % FeS and 0.21-2.80 mol % MnS in the stage IIB. The FeS and MnS contents are in general correlated, and shows a characteristic zonal arrangement of electrum. It reveals rhat FeS contents of sphalerite which precipitated before electrum, gradually decreases in a grain during its deposition ranging from about 3.3 to 2 mol %. It may be considered from the above data that an increase of $fs_2$ caused by the oxidation of ore forming fluid is more important that the decrease of temperature.

  • PDF

Mineralogical and Geochemical Studies on the Daum Vent Field, Central Indian Ridge (인도양 중앙해령 Daum 열수분출대의 광물·지구화학적 연구)

  • Ryoung Gyun Kim;Sun Ki Choi;Jonguk Kim;Sang Joon Pak;Wonnyon Kim
    • Economic and Environmental Geology
    • /
    • 제56권6호
    • /
    • pp.765-779
    • /
    • 2023
  • The Daum Vent Field (DVF) was newly discovered in the Central Indian Ridge during the hydrothermal expedition by the Korea Institute of Ocean Science & Technology (KIOST) in 2021. In this paper, we describe the detailed mineralogy and geochemistry of hydrothermal chimney and mound to understand the nature of hydrothermal mineralization in the DVF. The mineral assemblages (pyrite±sphalerite±chalcopyrite) of dominant sulfides, FeS contents (mostly <20 mole %) of sphalerite, and (Cu+Zn)/Fe values (0.001-0.22) of bulk compositions indicate that the DVF has an strong affinity with basaltic-hosted seafloor massive sulfide (SMS) deposit along the oceanic ridge. Combined with the predominance of colloform and/or dendritic-textured pyrite and relatively Fe-poor sphalerite in chimneys, the fluid-temperature dependency of trace element systematics (Co, Mn, and Tl) between chimney and mound indicates that the formation of mound was controlled by relatively reducing and high-temperature fluids compared to chimney. The δ34S values (+8.31 to +10.52‰) of pyrite reflect that sulfur and metals were mainly leached from the associated basement rocks (50.6-61.3%) with a contribution from reduced seawater sulfur (38.7-49.4%). This suggests that the fluid-rock interaction, with little effect of magmatic volatile influx, is an important metal source for the sulfide mineralization in the DVF.