• Title/Summary/Keyword: Fe metal powder

Search Result 244, Processing Time 0.031 seconds

Preparation and Oxygen Permeation Properties of La0.07Sr0.3Co0.2Fe0.8O3-δ Membrane (La0.07Sr0.3Co0.2Fe0.8O3-δ 분리막의 제조 및 산소투과 특성)

  • Park, Jung Hoon;Kim, Jong Pyo;Baek, Il Hyun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.477-483
    • /
    • 2008
  • $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ oxide was synthesized by a citrate method and a typical dense membrane of perovskite oxide has been prepared using as-prepared powder by pressing and sintering at $1300^{\circ}C$. Precursor of $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ prepared by citrate method was investigated by TGA and XRD. Metal-citrate complex in precursor was decomposed into perovskite oxide in the temperature range of $260{\sim}410^{\circ}C$ but XRD results showed $SrCO_3$ existed as impurity at less than $900^{\circ}C$. Electrical conductivity of membrane increased with increasing temperature but then decreased over $700^{\circ}C$ in air atmosphere ($Po_2=0.2atm$) and $600^{\circ}C$ in He atmosphere ($Po_2=0.01atm$) respectively due to oxygen loss from the crystal lattice. The oxygen permeation flux increased with increasing temperature and maximum oxygen permeation flux of $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ membrane with 1.6 mm thickness was about $0.31cm^3/cm^2{\cdot}min$ at $950^{\circ}C$. The activation energy for oxygen permeation was 88.4 kJ/mol in the temperature range of $750{\sim}950^{\circ}C$. Perovskite structure of membrane was not changed after permeation test of 40 h and the membrane was stable without secondary phase change with 0.3 mol Sr addition.

A Study on the Application of SAW Process for Thin Plate of 3.2 Thickness in Ship Structure (선체외판부 3.2T 박판에 대한 SAW 용접 적용에 관한 연구)

  • Oh, Chong-In;Yun, Jin-Oh;Lim, Dong-Young;Jeong, Sang-Hoon;Lee, Jeong-Soo
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.51-51
    • /
    • 2010
  • Recently just as in the automobile industry, shipbuilders also try to reduce material consumption and weight in order to keep operating costs as low as possible and improve the speed of production. Naturally industry is ever searching for welding techniques offering higher power, higher productivity and a better quality. Therefore it is important to have a details research based on the various welding process applied to steel and other materials, and to have the ability both to counsel interested companies and to evaluate the feasibility of implementation of this process. Submerged-arc welding (SAW) process is usually used about 20% of shipbuilding. Similar to gas metal arc welding(GMAW), SAW involves formation of an arc between a continuously-fed bare wire electrode and the work-piece. The process uses a flux to generate protective gases and slag, and to add alloying elements to the weld pool and a shielding gas is not required. Prior to welding, a thin layer of flux powder is placed on the work-piece surface. The arc moves along the joint line and as it does so, excess flux is recycled via a hopper. Remaining fused slag layers can be easily removed after welding. As the arc is completely covered by the flux layer, heat loss is extremely low. This produces a thermal efficiency as high as 60% (compared with 25% for manual metal arc). SAW process offers many advantages compared to conventional CO2 welding process. The main advantages of SAW are higher welding speed, facility of workers, less deformation and better than bead shape & strength of welded joint because there is no visible arc light, welding is spatter-free, fully-mechanized or automatic process, high travel speed, and depth of penetration and chemical composition of the deposited weld metal. However it is difficult to application of thin plate according to high heat input. So this paper has been focused on application of the field according to SAW process for thin plate in ship-structures. For this purpose, It has been decided to optimized welding condition by experiments, relationship between welding parameters and bead shapes, mechanical test such as tensile and bending. Also finite element(FE) based numerical comparison of thermal history and welding residual stress in A-grade 3.2 thickness steel of SAW been made in this study. From the result of this study, It makes substantial saving of time and manufacturing cost and raises the quality of product.

  • PDF

Heavy Metal Contamination of Soils and Stream Sediments at the Sanggok Mine Drainage, Upper Chungju Lake, Korea (충주호 상류, 상곡광산 수계에 분포하는 토양과 하상퇴적물의 중금속 오염)

  • 이현구;이찬희
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.1
    • /
    • pp.10-20
    • /
    • 1998
  • Heavy metal contamination in subsurface soils and stream sediments at the Suggok mine area were investigated on the basis of major, trace and rare earth elements geochemistry and mineralogy. The Sanggok mine area is mainly composed of Cambro-Ordovician carbonate rocks. The mine had been mined for Pb-Zn-Fe and Au- Ag, but already closed in past. For major elements, especially Fe (mean value=18.58 wt.%) and Mn (mean value=4. 18 wt.%) are enriched in soils, and the average enrichment indices of soils and sediments are 6.84 and 1.54, respectively. The average enrichment index of rare earth elements are 0.92 of mining drainage sediments and 0.52 of subsurface soils on the tailing dam. Concentrations of minor and/or environmental toxic elements in those samples range from 29 to 3400 for As,1 to 11 for Cd, 35 to 292 for Cu, 50 to 1827 for Pb, 1 to 22 for Sb and 112 to 2644 for Zn. Extremely high concentrations (mean values) are found in subsurface soils on the tailing dam (As=2278, Cd=7, Cu=206, Pb=1372, Sb=14 and Zn=2231 ppm, respectively). Average enrichment index normalized by composition of non-mining drainage sediments is 2.42 in mining drainage sediments and 25.47 in subsurface soils on the tailing dam. Based on EPA value, enrichment index of toxic elements is 0.53 in non-mining drainage sediments, 1.84 in mining drainage sediments and 23.71 in subsurface soils on the tailing dam. As a results from X-ray powder diffraction method, mineral composition of soils and sediments near the mine area varied in part, and are calcite, dolomite, magnesite, quartz, mica, chlorite and clay minerals. With the separation of heavy minerals, soils and sediments of highly concentrated toxic elements included some pyrite, arsenopyrite, sphalerite, galena, goethite and hydroxide minerals on the polished sections.

  • PDF

P123-Templated Co3O4/Al2O3 Mesoporous Mixed Oxides for Epoxidation of Styrene

  • Jung, Mie-Won;Kim, Young-Sil
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.316-320
    • /
    • 2012
  • $Co_3O_4$, $Al_2O_3$ and $Co_3O_4$/$Al_2O_3$ mesoporous powders were prepared by a sol-gel method with starting matierals of aluminum isopropoxide and cobalt (II) nitrate. A P123 template is employed as an active organic additive for improving the specific surface area of the mixed oxide by forming surfactant micelles. A transition metal cobalt oxide supported on alumina with and without P123 was tested to find the most active and selective conditions as a heterogeneous catalyst in the reaction of styrene epoxidation. A bBlock copolymer-P123 template was added to the staring materials to control physical and chemical properties. The properties of $Co_3O_4$/$Al_2O_3$ powder with and without P123 were characterized using an X-ray diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), a Bruner-Emmertt-Teller (BET) surface analyzer, and $^{27}Al$ MAS NMR spectroscopy. Powders with and without P123 were compared in catalytic tests. The catalytic activity and selectivity were monitored by GC/MS, $^1H$, and $^{13}C$-NMR spectroscopy. The performance for the reaction of epoxidation of styrene was observed to be in the following order: [$Co_3O_4$/$Al_2O_3$ with P123-1173 K > $Co_3O_4$/$Al_2O_3$ with P123-973 K > $Co_3O_4$-973 K>$Co_3O_4$/$Al_2O_3$-973 K > $Co_3O_4$/$Al_2O_3$ with P123-1473 K > $Al_2O_3$-973 K]. The existence of ${\gamma}$-alumina and the nature of the surface morphology are related to catalytic activity.

Synthesis and Characterization of Y2O3 Powders by a Modified Solvothermal Process

  • Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.78-81
    • /
    • 2012
  • $Y_2O_3$ nanomaterials have been widely used in transparent ceramics and luminescent devices. Recently, many studies have focused on controlling the size and morphology of $Y_2O_3$ in order to obtain better material performance. $Y_2O_3$ powders were prepared under a modified solvothermal condition involving precipitation from metal nitrates with aqueous ammonium hydroxide. The powders were obtained at temperatures at $250^{\circ}C$ after a 6h process. The properties of the $Y_2O_3$ powders were studied as a function of the solvent ratio. The synthesis of $Y_2O_3$ crystalline particles is possible under a modified solvothermal condition in a water/ethylene glycol solution. Solvothermal processing condition parameters including the pH, reaction temperature and solvent ratio, have significant effects on the formation, phase component, morphology and particle size of yttria powders. Ethylene glycol is a versatile, widely used, inexpensive, and safe capping organic molecule for uniform nanoparticles besides as a solvent. The characterization of the synthesized Y2O3 powders were studied by XRD, SEM (FE-SEM) and TG/DSC. An X-ray diffraction analysis of the synthesized powders indicated the formation of the $Y_2O_3$ cubic structure upon calcination. The average crystalline sizes and distribution of the synthesized $Y_2O_3$ powders was less than 2 um and broad, respectively. The synthesized particles were spherical and hexagonal in shape. The morphology of the synthesized powders changed with the water and ethylene glycol ratio. The average size and shape of the synthesized particles could be controlled by adjusting the solvent ratio.

Separation of Nickel and Tin from copper alloy dross (구리 합금 부산물에서의 주석과 니켈의 분리)

  • Lee, Jung-Il;Hong, Chang Woo;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.224-228
    • /
    • 2014
  • Recently, the demands for separation/recovery of valuable metals such as nickel or tin from copper based alloys has been attracting much attention from the viewpoints of environmental protection and resource utilization. In this report, experimental results on concentration increasement of nickel and tin compared to the previous report are investigated. Ni is successfully separated by a organic solvent and reduced to the metal powder whose concentration is over 98 %. Sn is separated by a selective solution method and its concentration is increased to 97.5 % by three consecutive solution and reduction process. Crystal structure, surface morphology and microstructure of the separated samples are studied.

Studies on the Production of Artificial Zeolite from Coal Fly Ash and Its Utilization in Agro-Environment

  • Lee, Deog-Bae;Henmi, Teruo;Lee, Kyung-Bo;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.401-418
    • /
    • 2000
  • 1. Production of the artificial zeolite from coal ash Coal fly ash is mainly composed of several oxides including $SiO_2$ and $Al_2O_3$ derived from inorganic compounds remained after burning. As minor components, $Fe_2O_3$ and oxides of Mg, Ca, P, Ti (trace) are also contained in the ash. These components are presented as glass form resulting from fusion in the process of the combustion of coal. In other word, coal ash may refer to a kind of aluminosilicate glass that is known to easily change to zeolite-like materials by hydrothermal reaction. Lots of hot seawater is disposing near thermal power plants after cooling turbine generator periodically. Using seawater in the hydrothermal reaction caused to produce low price artificial zeolite by reduction of sodium hydroxide consumption, heating energy and water cost. As coal ash were reacted hydrothermally, peaks of quartz and mullite in the ash were weakened and disappeared, and new Na-Pl peaks were appeared strengthily. Si-O-Si bonding of the bituminous coal ash was changed to Si-O-Al (and $Fe^{3+}$) bonding by the reaction. Therefore the produced Na-Pl type zeolite had high CEC of 276.7 $cmol^+{\cdot}kg^{-1}$ and well developed molecular sieve structure with low concentration of heavy metals. 2. Utilization of the artificial zeolite in agro-environment The artificial zeolite(1g) could remove 123.5 mg of zinc, 164.7 mg copper, 184.4 mg cadmium and 350.6 mg lead in the synthetic wastewater. The removability is higher 2.8 times in zinc, 3.3 times in copper, 4.7 times in cadmium and 4.8 times in lead than natural zeolite and charcoal powder. When the heavy metals were treated at the ratio of 150 $kg{\cdot}ha^{-1}$ to the rice plant, various growth inhibition were observed; brownish discoloration and death of leaf sheath, growth inhibition in culm length, number of panicles and grains, grain ripening and rice yield. But these growth inhibition was greatly alleviated by the application of artificial zeolite, therefore, rice yield increased $1.1{\sim}3.2$ times according to the metal kind. In addition, the concentration of heavy metals in the brown rice also lowered by $27{\sim}75%$. Artificial Granular Zeolites (AGZ) was developed for the purification of wastewater. Canon exchange capacity was 126.8 $cmol^+{\cdot}kg^{-1}$. AGZ had Na-Pl peaks mainly with some minor $C_3S$ peaks in X-ray diffractogram. In addition, AGZs had various pore structure that may be adhere the suspended solid and offer microbiological niche to decompose organic pollutants. AGZ could remove ammonium, orthophosphate and heavy metals simultaneously. Mixing ratio of artificial zeolite in AGZs was related positively with removal efficiency of $NH_4\;^+$ and negatively with that of $PO_4\;^{3-}$. Root growth of rice seedling was inhibited severely in the mine wastewater because of strong acidity and high concentration of heavy metals. As AGZ(1 kg) stayed in the wastewater(100L) for 4days, water quality turned into safely for agricultural usage and rice seedlings grew normally.

  • PDF

Field Experiment on AMD Treatment Using Apatite and Fish Bone at the Ilkwang Mine (인회석 및 생선뼈를 이용한 일광광산 AMD 처리 현장실험)

  • Choi, Jung-Chan
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.563-570
    • /
    • 2005
  • The purposes of this study are to examine a field test on heavy metal removal efficiency for AMD(Acid Mine Drainage) using fish bone and apatite, and to compare those results of the laboratory & the field tests. The duration of the field test was about one month and flow rates of AMD varied from 2.53 l/min to 12.8 l/min. From the result of the field test, removal efficiencies of apatite and those of fish bone are high for As, Fe, and Pb while those of fish born is higher than those of apatite far Al, Cd, Cu and Zn which are similar to the result of the previous laboratory test. In particular, average arsenic removal efficiency of apatite is higher$(84\%)$ than that of fish bone$(75\%)$ like the result of the previous laboratory test. In case of precipitates of phosphate compounds which are generated from chemical reaction between apatite/fish bone and AMD, those generated from apatite/AMD reactionform powder-shape while those created from fish bone/AMD reaction seem to be sludge. Therefore, apatite will be used as a precipitant for mine drainages having wide range of pH based on previous studies while fish bone will be applied as a precipitantfor AMD having lower PH and high concentration of heavy metals.

Studies on the Stabilities of Red Pepper Oleoresin (고추 oleoresin의 품질안정성(品質安定性))

  • Kim, Chie-Soon;Lee, Gyu-Hee;Bae, Jung-Seul;Oh, Man-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.16 no.3
    • /
    • pp.85-90
    • /
    • 1987
  • This experiment was carried out to study the preparations of red pepper oleoresin, the effects of pH and heat treatment on the stabilities of capsanthin and capsaicin in oleoresin state, and the interacting effects of ascorbic acid, metal salts and EDTA on the stabilities of capsanthin in the oleoresin-linoleate aqueous model system. The results were as follows: 1. Acetone was the most effective solvent to extract capsanthin and capsaicin from red pepper powder. The yield of oleoresin extracted with acetone was 14.27%. 2. Capsaicin was more stable at high temperature than capsanthin in oleoresin state. Capsanthin and capsaicin in oleoresin state were comparatively stable in the range (ron) pH 3 to pH 8. 3. Ascorbic acid acted as a prooxidant on the capsanthin oxidation reaction at concentrations up to $10^{-3}M$, but acted as an antioxidant at $10^{-1}M$. 4. The addition of $Cu^{+2}M$ and $Fe^{+3}M$ ions at all concentration increased the prooxidant activity on the degradation of capsanthin in oleoresin state. 5. EDTA showed a strong antioxidation the stability of capsanthin in oleoresin state.

  • PDF

Effect of Temperature on Growth of Tin Oxide Nanostructures (산화주석 나노구조물의 성장에서 기판 온도의 효과)

  • Kim, Mee-Ree;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.497-502
    • /
    • 2019
  • Metal oxide nanostructures are promising materials for advanced applications, such as high sensitive gas sensors, and high capacitance lithium-ion batteries. In this study, tin oxide (SnO) nanostructures were grown on a Si wafer substrate using a two-zone horizontal furnace system for a various substrate temperatures. The raw material of tin dioxide ($SnO_2$) powder was vaporized at $1070^{\circ}C$ in an alumina crucible. High purity Ar gas, as a carrier gas, was flown with a flow rate of 1000 standard cubic centimeters per minute. The SnO nanostructures were grown on a Si substrate at $350{\sim}450^{\circ}C$ under 545 Pa for 30 minutes. The surface morphology of the as-grown SnO nanostructures on Si substrate was characterized by field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Raman spectroscopy was used to confirm the phase of the as-grown SnO nanostructures. As the results, the as-grown tin oxide nanostructures exhibited a pure tin monoxide phase. As the substrate temperature was increased from $350^{\circ}C$ to $424^{\circ}C$, the thickness and grain size of the SnO nanostructures were increased. The SnO nanostructures grown at $450^{\circ}C$ exhibited complex polycrystalline structures, whereas the SnO nanostructures grown at $350^{\circ}C$ to $424^{\circ}C$ exhibited simple grain structures parallel to the substrate.