• Title/Summary/Keyword: Fe ion

Search Result 1,133, Processing Time 0.033 seconds

Iron hydrolysis and lithium uptake on mixed-bed ion exchange resin at alkaline pH

  • Olga Y. Palazhchenko;Jane P. Ferguson;William G. Cook
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3665-3676
    • /
    • 2023
  • The use of ion exchange resins to remove ionic impurities from solution is prevalent in industrial process systems, including in the primary heat transport system (PHTS) purification circuit of nuclear power plants. Despite its extensive use in the nuclear industry, our general understanding of ion exchange cannot fully explain the complex chemistry in ion exchange beds, particularly when operated at or near their saturation limit. This work investigates the behaviour of mixed-bed ion exchange resin, saturated with species representative of corrosion products in a CANDU (Canadian Deuterium Uranium) reactor PHTS, particularly with respect to iron chemistry in the resin bed and the removal of lithium ions from solution. Experiments were performed under deaerated conditions, analogous to normal PHTS operation. The results show interesting iron chemistry, suggesting the hydrolysis of cation resin bound ferrous species and the subsequent formation of either a solid hydrolysis product or the soluble, anionic Fe(OH)3-.

Studies on the Adsarption Characteristics of Fluoride Ion-Containing Wastewater by Employing Waste Oyster Shell as an Adsorbent (폐굴껍질을 흡착제로 한 불소폐수 처리특성에 관한 연구)

  • Lee, Jin-Suk;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.222-227
    • /
    • 2007
  • The adsorption features of fluoride ion on the oyster shell have been investigated for the purpose of the employment of waste oyster shell as an adsorbent for the treatment of fluoride ion-containing wastewater. The major component of oyster shell was examined to be Ca with minor components of Na, Si, Mg, Al, and Fe. As the initial concentration of fluoride ion was raised, its absorbed amount was enhanced at equilibrium, however, the adsorption ratio of fluoride ion compared with its initial concentration was shown to be decreased. Also, adsorption of fluoride ion onto the oyster shell resulted in the formation of $CaF_2$ in the morphological structure of adsorbent. Kinetic analysis showed that the adsorption reaction of fluoride ion generally followed a second order reaction with decreasing rate constant with the initial concentration of adsorbate. Freundlich model agreed well with the adsorption behavior of fluoride ion at equilibrium and the adsorption reaction of fluoride ion was examined to be endothermic. Several thermodynamic parameters for the adsorption reaction were calculated based on thermodynamic equations and the activation energy for the adsorption of fluoride ion onto oyster shell was estimated to be ca. 13.589 kJ/mole.

Electrochemical Characteristics of Lithium-ion Battery with Doped Graphite Nanofiber (카본 나노파이버가 도핑된 리튬이온전지의 전기화학적 특성)

  • Wang, Wan Lin;Jin, En Mei;Gu, Hal-Bon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.137.1-137.1
    • /
    • 2011
  • 올리빈 구조의 $LiFePO_4$ 정극 활물질은 $650^{\circ}C$에서 고상법으로 제조되었다. $LiFePO_4$의 전자전도도를 향상시키기 위하여 graphite nanofiber(GNF)를 각각 3wt%, 5wt%, 7wt%, 9wt% 첨가하여 $LiFePO_4$-C를 제조하였다. 제조된 분말의 입자 형태를 확인하기 위하여 X-ray diffraction(XRD)과 File Electronic Scaning Electromicroscopy(FE-SEM)를 측정하였다. XRD결과로부터 제조된 분말은 모두 순수한 결정 구조를 나타내었고 입자의 크기는 약 200nm였다. 5wt% GNF를 첨가한 $LiFePO_4$-C는 기타 첨가량에 비해 방전용량이 가장 높았다. 첫 사이클의 용량은 151.73mAh/g 나타났고 50 사이클 뒤에도 92% 이상을 유지하고 있었다. 첨가하지 않은 것에 비해 43% 증가하였다. $LiFePO_4$-C(3wt%), $LiFePO_4$-C(7wt%), $LiFePO_4$-C(9wt%)의 첫 사이클 방전용량은 각각 147.94mAh/g, 136.64mAh/g, 121.07mAh/g 나타났다. $LiFePO_4$-C(5wt%)에 비해 용량은 떨어쪘지만 순수한 $LiFePO_4$보다 많이 높았다. 임피던스 결과를 보면 기타 첨가량에 비해 $LiFePO_4$-C(5wt%)의 저항 제일 낮았다. 이는 충방전 결과와 일치하였다. graphite nanofiber의 첨가로 인하여 $LiFePO_4$ 정극 활물질의 전자전도도가 높아지고, 따라서 전기화학적 특성도 크게 향상되었다.

  • PDF

Mössbauer Study of the Dynamics in BaFe12O19 Single Crystals

  • Choi, J.W.;Sur, J.C.;Lim, Jung-Tae;Kim, Chin-Mo;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.6-8
    • /
    • 2012
  • M$\ddot{o}$ssbauer spectra of hexagonal $BaFe_{12}O_{19}$ single crystals were studied at various temperatures (4-300 K). It was found that the spin states in Fe atoms were parallel to the ${\gamma}$-ray's direction into a single crystal along the caxis. The location of the Fe ion in the 2b site is unusual in an oxide structure and has strong anisotropic lattice vibrations. Moreover, at room temperature, the zero absorption lines of the Fe ions at the 2b site were observed due to fast diffusion motion in a double well atomic potential. The two Fe ions of the single crystal mainly enter into the sites in the mirror plane of the trigonalbipyramidal structure.

The Removal Characteristics of Caesium Ion by Chemical/Ultrafiltration Combination Process (화학적처리/한외여과막 결합공정에 의한 세슘이온의 제거 특성)

  • 정경환;이근우;김길정;박헌휘
    • Journal of Energy Engineering
    • /
    • v.3 no.1
    • /
    • pp.70-76
    • /
    • 1994
  • 본 연구는 방사성 폐액의 처리를 목적으로 화학처리와 한외여과막(UF)의 결합공정에 의해서 세슘이온의 제거특성을 조사하였다. 이 공정은 대상핵종과 선택성이 크고 한외여과막에 의해서 분리가 가능한 거대분자를 주입하여 핵종을 결합시키고, 이를 한외여과막에 의해서 분리 제거하는 개념이다. 실험은 흡착제로서 K2Cu3(Fe(CN6)2)를 제조하여 주입하였고 회분식 UF stirred cell를 이용하였으며, 용액의 pH, 세슘이온의 농도 및 K2Cu3(Fe(CN6)2)의 농도에 따라 세슘이온의 제거효율을 측정하였다. 세슘의 제거효율은 pH 및 K2Cu3(Fe(CN6)2)의 몰비에 따라 결정되며, pH가 5∼6에서 높은 제거율을 나타내었고 Cs/K2Cu3(Fe(CN6)2)의 몰비가 1.5 이하에서 90% 이상 제거되었다. K2Cu3(Fe(CN6)2)에 대한 Cs의 결합특성은 Langmuir isotherm형태의 식으로 나타내어 평가하였으며, 이때 세슘이온의 최대 흡착용량은 1.72 mM/mM K2Cu3(Fe(CN6)2) 이었다.

  • PDF

Characteristics of Critical Pressure for a Beam Shape of the Anode Type ion Beam Source

  • Huh, Yunsung;Hwang, Yunseok;Kim, Jeha
    • Applied Science and Convergence Technology
    • /
    • v.27 no.4
    • /
    • pp.65-69
    • /
    • 2018
  • We studied the critical pressure characteristics of an anode type ion beam source driven by both charge repulsion and diffusion mechanism. The critical pressure $P_{crit}$ of the diffusion type ion beam source was linearly decreased from 2.5 mTorr to 0.5 mTorr when the gas injection was varied in 3~10 sccm, while the $P_{crit}$ of the charge repulsion ion beam source was remained at 3.5 mTorr. At the gas injection of 10 sccm, the range of having normal beam shape in the charge repulsion ion beam source was about 6.4 times wider than that in the diffusion type ion beam source. An impurity of Fe 2p (KE = 776.68 eV) of 12.88 at. % was observed from the glass surface treated with the abnormal beam of the charge repulsion type ion beam source. The body temperature of the diffusion type ion beam source was observed to increase rapidly at the rate of $1.9^{\circ}C/min$ for 30 minutes and to vary slowly at the rate of $0.1^{\circ}C/min$ for 200 minutes for an abnormal beam and normal beam, respectively.

The Effect of Synthesis Conditions on the Electrochemical Properties of LiFePO4 for Cathode Material of Secondary Lithium Ion Batteries (리듐 2차 전지용 약극활물질 LiFePO4의 합성 조건에 다른 전기화학적 특성)

  • Kim, Do-Gyun;Park, Hyun-Min;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.121-125
    • /
    • 2006
  • [ $LiFePO_4$ ] is one of the promising materials for cathode material of secondary lithium batteries due to its high energy density, low cost, environmental friendliness and safety. $LiFePO_4$ was synthesized by the solid-state reaction method at 500 - 800°C. The crystal structure of $LiFePO_4$ was analyzed by X-ray powder diffraction. The samples synthesized at 600 and $700^{\circ}C$ showed a single phase of a olivine structure. The particle sizes were increased and the specific surface areas were decreased with heating temperatures. The electrochemical performance was investigated by coin cell test. The discharge capacities at 0.1 C-rate were 118 mAh/g and 112 mAh/g at $600^{\circ}C,\;700^{\circ}C$, respectively. In an attempt to improve the electrical conductivity of cathode materials, $LiFePO_4/graphite$ composite was prepared with various graphite contents. The electrical conductivity and discharge capacity were increased with increasing the graphite contents in composite samples. The rate capabilities at high current densities were also improved.

Modulation of Defect States in Co- and Fe-implanted Silicon by Rapid Thermal Annealing

  • Lee, Dong-Uk;Lee, Kyoung-Su;Pak, Sang-Woo;Suh, Joo-Young;Kim, Eun-Kyu;Lee, Jae-Sang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.314-314
    • /
    • 2012
  • The dilute magnetic semiconductors (DMS) have been developed to multi-functional electro-magnetic devices. Specially, the Si based DMS formed by ion implantation have strong advantages to improve magnetic properties because of the controllable effects of carrier concentration on ferromagnetism. In this study, we investigated the deep level states of Fe- and Co-ions implanted Si wafer during rapid thermal annealing (RTA) process. The p-type Si (100) wafers with hole concentration of $1{\times}10^{16}cm^{-3}$ were uniformly implanted by Fe and Co ions at a dose of $1{\times}10^{16}cm^{-2}$ with an energy of 60 keV. After RTA process at temperature ranges of $500{\sim}900^{\circ}C$ for 5 min in nitrogen ambient, the Au electrodes with thickness of 100 nm were deposited to fabricate a Schottky contact by thermal evaporator. The surface morphology, the crystal structure, and the defect state for Fe- and Co- ion implanted p-type Si wafers were investigated by an atomic force microscopy, a x-ray diffraction, and a deep level transient spectroscopy, respectively. Finally, we will discuss the physical relationship between the electrical properties and the variation of defect states for Fe- and Co-ions implanted Si wafer after RTA.

  • PDF

Effects of Etch Parameters on Etching of CoFeB Thin Films in $CH_4/O_2/Ar$ Mix

  • Lee, Tea-Young;Lee, Il-Hoon;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.390-390
    • /
    • 2012
  • Information technology industries has grown rapidly and demanded alternative memories for the next generation. The most popular random access memory, dynamic random-access memory (DRAM), has many advantages as a memory, but it could not meet the demands from the current of developed industries. One of highlighted alternative memories is magnetic random-access memory (MRAM). It has many advantages like low power consumption, huge storage, high operating speed, and non-volatile properties. MRAM consists of magnetic-tunnel-junction (MTJ) stack which is a key part of it and has various magnetic thin films like CoFeB, FePt, IrMn, and so on. Each magnetic thin film is difficult to be etched without any damages and react with chemical species in plasma. For improving the etching process, a high density plasma etching process was employed. Moreover, the previous etching gases were highly corrosive and dangerous. Therefore, the safety etching gases are needed to be developed. In this research, the etch characteristics of CoFeB magnetic thin films were studied by using an inductively coupled plasma reactive ion etching in $CH_4/O_2/Ar$ gas mixes. TiN thin films were used as a hardmask on CoFeB thin films. The concentrations of $O_2$ in $CH_4/O_2/Ar$ gas mix were varied, and then, the rf coil power, gas pressure, and dc-bias voltage. The etch rates and the selectivity were obtained by a surface profiler and the etch profiles were observed by a field emission scanning electron microscopy. X-ray photoelectron spectroscopy was employed to reveal the etch mechanism.

  • PDF

Studies on the Development of Photoreceptor in the Nonchromatophore Organisms (IV) -Effect of organic compound and metal ion influx of light-induced Mitochondrial ATP synthase in Lentinus edodes (Berk.) Sing- (무흡광 색소생물의 감광수용체 개발 연구(IV) -표고버섯 중의 광감응성 Mitochondrial ATP synthase의 유기물 및 금속이온 유입효과-)

  • Min, Tae-Jin;Lee, Wan-Gie;Kim, Jae-Woong;Mheen, Tae-Ick
    • The Korean Journal of Mycology
    • /
    • v.17 no.2
    • /
    • pp.99-104
    • /
    • 1989
  • Effects of organic compounds, photosensitizers and influx of metal ions on the light-induced mitochondrial ATP synthase in Lentinus edodes purified by stepped sucrose density gradient centrifugation were studied. In our previous work, the activation wavelength and the illumination time of mitochondrial ATP synthase were 470 nm and 15 sec, respectively. This enzyme was activated 85% by 1 mmole 2,6-dichlorophenol indopheol and inhibited by 1 mmole 2,-4-dinitrophenol, $10\;{\mu}mole$ 2-heptyl-4-hydroxyquinoline-N-oxide and $100\;{\mu}g$ oligomycin per ml of ethanol. Particularly, the enzyme was activated 414% by 10 mmole phenazine methosulfate as photosensitizer at 470 nm light. In the influx effects of $Fe^{3+}$ and $Fe^{2+}$ ion, the activity of the above enzyme increased under the optimal light condition compared with nonillumination state.

  • PDF