• Title/Summary/Keyword: Fe ion

Search Result 1,131, Processing Time 0.029 seconds

Corrosion of Zinc Coated Steel in Magnetically Treated 3% Sodium Chloride Solution

  • Chiba, A.;Ohki, T.;Wu, Wen-Chang
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.39-44
    • /
    • 2006
  • The dissolution amount of Zn plate was $0.058mg/cm^2$ in the non-magnetically treated solution, and was $0.059mg/cm^2$ in the magnetically treated solution after 24 hours of immersion. The magnetic treatment had no effect to corrosion of Zn plate as pH on surface was not recognized the difference. The addition of Zn(II) ion in the solution was prepared to the effects of corrosion and dissolution of Fe. The regularity was not obtained the effect of the magnetic treatment on the dissolution of Fe plate.

A New Trend of In-situ Electron Microscopy with Ion and Electron Beam Nano-Fabrication

  • Furuya, Kazuo;Tanaka, Miyoko
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.25-33
    • /
    • 2006
  • Nanofabrication with finely focused ion and electron beams is reviewed, and position and size controlled fabrication of nano-metals and -semiconductors is demonstrated. A focused ion beam (FIB) interface attached to a column of 200keV transmission electron microscope (TEM) was developed. Parallel lines and dots arrays were patterned on GaAs, Si and $SiO_2$ substrates with a 25keV $Ga^+-FIB$ of 200nm beam diameter at room temperature. FIB nanofabrication to semiconductor specimens caused amorphization and Ga injection. For the electron beam induced chemical vapor deposition (EBI-CVD), we have discovered that nano-metal dots are formed depending upon the beam diameter and the exposure time when decomposable gases such as $W(CO)_6$ were introduced at the beam irradiated areas. The diameter of the dots was reduced to less than 2.0nm with the UHV-FE-TEM, while those were limited to about 15nm in diameter with the FE-SEM. Self-standing 3D nanostructures were also successfully fabricated.

ETCHING CHARACTERISTICS OF MAGNETIC THIN FILMS BY ION BEAM TECHNIQUE

  • Lee, H.C.;Kim, S.D.;Lim, S.H.;Han, S.H.;Kim, H.J.;Kang, I.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.538-542
    • /
    • 1995
  • The etching characteristics of magnetic thin films of permalloy and Fe-based alloys are investigated. The thin films are fabricated by rf magnetron sputtering and the substrates used are silicon and glass. Etching is done by ion beam technique and the main process parameters investigated are beam voltage, beam current and accelerating voltage. The etch rate of the magnetic films is proportional to the beam current, but it is not directly related to the accelerating voltage and beam voltage. The dependence of etch rate on the process parameters can be explained by ion current density. It is found that the ion beam etching is effective in obtaining well-developed micro-patterns on the permalloy and Fe- based magnetic thin films.

  • PDF

Enhanced upper critical fields in low energy iron-irradiated single-crystalline MgB2 thin films

  • Pham, Duong;Jung, Soon-Gil;Tran, Duc H.;Park, Tuson;Kang, Won Nam
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.18-21
    • /
    • 2019
  • We studied the effect of Fe ion irradiation on the upper critical field ($H_{c2}$) of 410 nm single-crystalline $MgB_2$ thin films. The irradiation energy was fixed at 140 keV when we increased the irradiation doses from $1{\times}10^{14}ion/cm^2$ to $4{\times}10^{14}ion/cm^2$. We found that $H_{c2}$ significantly increase with increasing irradiation dose, despite the low irradiation energy. The enhancement of $H_{c2}$ could be explained by the reduction of electron mean free path caused by defects induced from irradiation, leading to a decrease of coherence length (${\xi}$). We also discussed the effect of irradiation on temperature-dependent resistivity in details.

Strong Absorption of Cations into a Cation Exchange Resin in Concentrated HClO$_4$

  • Kim Sunho;Kim Sung-Soo;Kim Kang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.225-228
    • /
    • 1985
  • The absorptions of Fe(Ⅲ), Tb(Ⅲ), Tl(Ⅰ), Ce(Ⅲ), Th(Ⅳ), and $UO_2^{2+}$ ions into the Dowex 50W-X2, 100-200 mesh resin were investigated by spectrophotometry to understand the abnormal strong absorption behavior of cations to cation exchange resins in concentrated HClO4. The distribution coefficients increase in the order : Tl(Ⅰ) < Fe(Ⅲ) < Tb(Ⅲ)∼Ce(Ⅲ) < $UO_2^{2+}$< Th(Ⅳ) and the order is interpreted in terms of the ratio of charge-to-ionic radius. The mole ratios of increment of $ClO_4^-$ ion absorption to metal ion absorption showed the same order as the distribution coefficients, which indicates that the electrostatic association between $ClO_4^-$ ion and metal ion plays a major role in the strong absorption.

Metal Ion-Containing Langmuir-Blodgett Films of a Monooctadecyl Itaconate Copolymer

  • 손종현;최기선;이범종;Kazue Kurihara
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.4
    • /
    • pp.316-320
    • /
    • 1995
  • The incorporation of metal ion into the Langmuir-Blodgett (LB) film of an itaconate copolymer was investigated. The polymer was prepared via radical copolymerization of monooctadecyl itaconate with triethyleneglycol methyl vinyl ether. The metal ions employed were Na+, Cs+, Mg2+, Fe2+, Al3+, and Fe3+. The surface pressure-area isotherms indicated that all the monolayers studied on subphases with metal ions showed more expanded areas than that observed on pure water. The monolayers showed an irreversible collapse behavior. The collapse pressure of the monolayers was low on subphases containing trivalent metal ions. From the FT-IR spectra by reflection and transmission modes, the formation of carboxylate salts and the uprisen orientation of the pendant against substrate surface in the polymer LB film were determined. It was estimated by XPS measurement that ca. 13.1 repeat units of the polymer contain one Na+ ion, while one Mg2+ ion corresponds to 5.9 carboxyls.

Physical properties of ion-beam mixed Fe/Si multilayered films

  • Park, J.S.;Kim, C.O.;Lee, Y.P.;Kudryavtsev, Y.V.;Dubowik, J.;Szymanski, B.;Rhee, J.Y.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.5 no.2
    • /
    • pp.38-42
    • /
    • 2001
  • We investigated physical properties of ion-beam mixed Fe/si multilayerd films(MLF) prepared by rf sputtering onto glass substrates at room temperature. Such an ion-beam treatment has led to noticeable changes in the structural and physical properties of the MLF: the formation of a new phase which is characterized by a crystalline silicide with a low coercivity and Tc = 550 K. In contrast to the as-prepared state, the ion-beam mixed MLF contains two magnetic phases. One of them is a very soft (Hc < 2 Oe), but microscopically homogeneous one with M$\sub$eff/=6.7 kG.

  • PDF

Flocculation Kinetics Using Fe(III) Coagulant in Advanced Water Treatment: The Effect of Sulfate Ion (상수처리시 Fe(III) 응집제를 이용한 응집동력학에 관한 연구 : 황산이온의 영향)

  • 강임석;이병헌
    • Journal of Environmental Science International
    • /
    • v.4 no.4
    • /
    • pp.367-377
    • /
    • 1995
  • The study of flocculation kinetics is of fundamental interest in the field of water treatment, because rational study of the factors affecting the coagulation process should be based on the rate of particle growth. The effect of sulfate on flocculation kinetics were examined using ferric nitrate as a coagulant to coagulate kaolin clay in water under several experimental conditions. Both the particle size distribution data obtained from the AIA and the on-line measurement of turbidity fluctuation by the PDA were used to measure flocculation kinetics. Results show that sulfate ion added to the kaolin suspension played an important role in the flocculation process, not only improving flocculation kinetics at more acidic pH levels but also changing surface charge of particles. The kinetics of flocculation were improved mainly by the enhanced rate and extent of Fe(III) precipitation attributed to the addition of sulfate, and thereby, better interparticle collision frequency, but little by the charge reductions resulting from the sulfate addition. The increase in sulfate concentration beyond $3\times10^{-4}M (up to 2\times10^{-3}M)$ did not induce further improvement in flocculation kinetics, although the higher concentrations of sulfate ion substantially increased the negative ZP value of particles. Key Words : Flocculation Kinetics, Fe(III) Coagulant, Sulfate ion, Turbidity Fluctuation.

  • PDF

Kinetics of N2O Decomposition over Fe-TNU-9 Zeolite (Fe-TNU-9 제올라이트 상에서 아산화질소의 분해반응 속도론)

  • Park, Jung-Hyun;Jeon, Seong-Hee;Van Khoa, Nguyen;Shin, Chae-Ho
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.453-458
    • /
    • 2009
  • Iron-containing TNU-9 zeolites were prepared by aqueous ion exchange in the range of Fe contents 0.6~3.3 wt%. Direct decomposition of $N_2O$ was performed varying $N_2O$ concentrations and reaction temperatures. Fe-TNU-9 zeolites used were characterized using XRD, $N_2$ sorption, SEM/EDX. A 2.7 wt% Fe-TNU-9 zeolite showed high activities and above this contents of Fe the effect of catalytic activity was little dominated. Fe-TNU-9 zeolites after ion exchange conserved their TNU-9 structure although the degree of crystallinity was decreased until ca. 60% in 3.1 wt% Fe-TNU-9 zeolite after ion exchange in 0.01 M Fe solution. The decrease in the degree of crystallinity could be correlated with the decrease of surface area and pore volume. The partial reaction order of $N_2O$ in the decomposition of $N_2O$ was dependent on the reaction temperature from 0.69 at $420^{\circ}C$ to 0.97 at $494^{\circ}C$. The activation energy of $N_2O$ was also dependent on the $N_2O$ concentration and its value is ranged to 34~43 kcal/mol.

Effect of Cations on the Sorption and the Tensile Properties of CMC Fibers (CMC섬유내의 양이온이 섬유의 흡습성과 인장 성질에 미치는 영향)

  • 이미식
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.1
    • /
    • pp.113-120
    • /
    • 1994
  • The Purpose of this study was to improve the moisture related properties of viscose rayon fibers. Viscose rayon filament yarns were partially etherified to make CMC fibers. CMC fibers were converted to the sodium, calcium, and ferric salt forms by an ion exchange method. The property changes of ion exchanged CMC fibers were examined. Cation contents of fibers were varied depending on the degree of substitution of CMC fibers. The strength of Na, Ca, Fe-CMC was higher than H-CMC owing to the plasticization by moisture sorption and the crosslinking by cations. The moisture regain was increased by carboxymethylation and that of Fe-CMC showed the highest value. The degree of swelling determined by the water retention value was observed to be Na-CMC > Ca-CMC > H-CMC > Fe-CMC. The solution retention value was decreased in the order . Ca-CMC > Na-CMC > H-CMC > Fe-CMC.

  • PDF