• Title/Summary/Keyword: Fe alloys

Search Result 906, Processing Time 0.023 seconds

Effect of Al and Cr contents on the High Temperature Oxidation- and Sulfidation-resistance of Fe Alloys (Fe합금의 내 산화성과 황화성에 미치는 Al과 Cr 함량의 영향)

  • Kim, Seul-Ki;Lee, Dong-Bok
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.2
    • /
    • pp.61-69
    • /
    • 2012
  • Alloys of Fe-(5, 10, 15)Al and Fe-(10, 20, 30, 40)Cr were corroded at 700 and $800^{\circ}C$ for 70 hr in either atmospheric air or 1 atm of Ar+$1%SO_2$ gases. In these atmospheres, Fe-5Al and Fe-10Cr alloys displayed poor corrosion resistance. In atmospheric air, Fe-5Al alloys formed oxide nodules, while Fe-10Cr alloys formed thick scales and internal oxides. In Ar+$1%SO_2$ gases, Fe-5Al and Fe-10Cr alloys formed thick, nonadherent bi-layered scales, which grew primarily by the outward diffusion of Fe ions and inward diffusion of oxygen and sulfur ions. By contrast, in atmospheric air and Ar+$1%SO_2$ gases, Fe-(10, 15)Al and Fe-(20, 30, 40)Cr alloys displayed good corrosion resistance by forming $Al_2O_3$ and $Cr_2O_3$ layers on the surface, respectively.

Effects of Zn and Mg Amounts on the Properties of High Thermal Conductivity Al-Zn-Mg-Fe Alloys for Die Casting (다이캐스팅용 고열전도도 Al-Zn-Mg-Fe 합금의 특성에 미치는 Zn 및 Mg 첨가량의 영향)

  • Kim, Ki-Tae;Lim, Young-Suk;Shin, Je-Sik;Ko, Se-Hyun;Kim, Jeong-Min
    • Journal of Korea Foundry Society
    • /
    • v.33 no.3
    • /
    • pp.113-121
    • /
    • 2013
  • The effects of Zn and Mg amounts on the solidification characteristics, microstructure, thermal conductivity and tensile strength of Al-Zn-Mg-Fe alloys were investigated for the development of high thermal conductivity aluminium alloys for die casting. Zn and Mg amounts in Al-Zn-Mg-Fe alloys had a little effect on the liquidus / solidus temperature, the latent heat for solidification and the fluidity of Al-Zn-Mg-Fe alloys. Thermo-physical modelling of Al-Zn-Mg-Fe alloys by JMatPro program showed $MgZn_2$, AlCuMgZn and Al3Fe phases on microstructure of their alloys. Increase of Zn and Mg amounts in Al-Zn-Mg-Fe alloys resulted in gradual reduction of the thermal conductivity of their alloys. Increase of Mg amounts in Al-2%Zn-Mg-Fe alloys had little effect on the tensile strength of their alloys, but increase of Mg amounts in Al-4%Zn-Mg-Fe alloys resulted in steep increase of the tensile strength of their alloys.

Analysis of Wear Resistance and Wear Mechanism Change of Ti-5Mo-xFe (x=2,4 wt%) Alloys Based on Fe Addition (Ti-5Mo-xFe (x=2,4 wt%) 합금의 Fe 첨가에 따른 마모 메커니즘 변화와 내마모 특성 분석)

  • Yeong-Hun Jung;Yong-Jae Lee;Dong-Geun Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.5
    • /
    • pp.247-254
    • /
    • 2024
  • Metastable β titanium alloys have been used in implants due to their high specific strength and excellent corrosion resistance. However, the high cost of β-stabilizing elements limits the application of metastable β titanium alloys. Consequently, research has been conducted on low-cost metastable β titanium alloys using relatively inexpenisve β-stabilizing elements such as Mo and Fe. This study analyzes the wear resistance of Ti-5Mo-xFe (x=2,4 wt%) alloys, designed and manufactured as low-cost metastable β titanium alloys. The wear mechanisms of Ti-5Mo-xFe alloys were identified through ball-on disk testing and observation of the worn surfaces. Additionally, the influence of Fe addition on the microstructure and the resulting changes in wear resistance were examined. The wear resistance of the Ti-5Mo-xFe alloys were evaluated in comparison to the Ti-6Al-4V ELI alloy.

Effects of Alloying Elements on the Properties of High Strength and High Thermal Conductivity Al-Zn-Mg-Fe Alloy for Die Casting (다이캐스팅용 Al-Zn-Mg-Fe 합금의 특성에 미치는 Zn 및 Mg 첨가의 영향)

  • Kim, Ki-Tae;Lim, Young-Suk;Shin, Je-Sik;Ko, Se-Hyun;Kim, Jeong-Min
    • Journal of Korea Foundry Society
    • /
    • v.33 no.4
    • /
    • pp.171-180
    • /
    • 2013
  • The effects of alloying elements on the solidification characteristics, microstructure, thermal conductivity, and tensile strength of Al-Zn-Mg-Fe alloys were investigated for the development of high strength and high thermal conductivity aluminium alloy for die casting. The amounts of Zn and Mg in Al-Zn-Mg-Fe alloys had little effect on the liquidus/solidus temperature, the latent heat for solidification, the energy release for solidification and the fluidity of Al-Zn-Mg-Fe alloys. Thermo-physical modelling of Al-Zn-Mg-Fe alloys by the JMatPro program showed $MgZn_2$, AlCuMgZn and $Al_3Fe$ phases in the microstructure of the alloys. Increased amounts of Mg in Al-Zn-Mg-Fe alloys resulted in phase transformation, such as $MgZn_2{\Rightarrow}MgZn_2+AlCuMgZn{\Rightarrow}AlCuMgZn$ in the microstructure of the alloys. Increased amounts of Zn and Mg in Al-Zn-Mg-Fe alloys resulted in a gradual reduction of the thermal conductivity of the alloys. Increased amounts of Zn and Mg in Al-Zn-Mg-Fe alloys had little effect on the tensile strength of the alloys.

Effect of Al and Cr on Oxidation of Fe-Al and Fe-Cr Alloys (Fe-Al과 Fe-Cr계 합금의 내 산화성에 미치는 Al과 Cr의 영향)

  • Kim, Tae-Wan;Jo, Seung-Hoon;Ko, In-Yong;Doh, Jung-Mann;Yoon, Jin-Kook;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.981-988
    • /
    • 2010
  • The effects of Cr and Al contents in Fe-Al and Fe-Cr alloys on oxidation resistance, hardness, and the thermal expansion coefficient were investigated. Fe-Al and Fe-Cr alloys above 10wt.%Al and 20wt.%Cr contents have a high oxidation resistance. The hardness of the Fe-Al and Fe-Cr alloys increased with an increase in Al and Cr contents due to solid solution or formation of an intermetallic compound. The coefficients of thermal expansion of the Fe-Al alloys were higher than those of the Fe-Cr alloys because the coefficient of thermal expansion of Al was higher than that of Fe and Cr.

Effect of Fe on the High Temperature Oxidation of TiAl Alloys (TiAl 합금의 고온 산화에 미치는 Fe의 영향)

  • 김미현;이동복
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.4
    • /
    • pp.281-288
    • /
    • 2000
  • To understand the effect of Fe on the oxidation behavior of TiAl alloys, TiAl-(2, 4, 6at% )Fe were oxidized at 800 and 90$0^{\circ}C$ in air. The oxidation resistance of TiAl-Fe alloys increased with increasing an iron content. The scales formed consisted of an outer $TiO_2$ layer, an intermediate $A1_2$$O_3$ layer, and an inner mixed ($TiO_2$+$A1_2$$O_3$) layer, being similar to other common TiAl alloys. But, the scales formed on TiAl-Fe alloys were generally thin compared to those formed on pure TiAl, and contained dissolved iron. Below the oxide scale, an oxygen affected zone was formed. This beneficial effects of Fe on increasing the oxidation resistance and scale adherence of TiAl alloys were attributed to the refinement of oxide grains, increased scale adherence and the enhanced alumina-forming tendency.

  • PDF

A Study of Structures and Magnetic Properties of Electrodeposited Fe-45 wt%Ni-P Alloys (전착법에 의한 Fe-45 wt%Ni-P 합금의 조직과 자기적 성질에 관한 연구)

  • 구승현;이흥렬;김동환;황태진;임태홍
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.461-465
    • /
    • 2003
  • The microstructures and magnetic properties of electrodeposited Fe-45 wt%Ni-P alloys have been investigated. The structures of electrodeposited Fe-45 wt%Ni alloy was FCC i.e. ${\gamma}$ phase and the size of crystallite was 10 nm. The structure of electrodeposited Fe-45 wt%Ni-1 wt%P alloy showed ${\gamma}$ phase and 7 nm sized nanocrystalline. The electrodeposited Fe-45 wt%Ni-P alloys containing 2∼3 wt% of P exhibited ${\gamma}$$\alpha$ dual phases. The electrodeposited Fe-45 wt%Ni-P alloys above 3.5 wt% showed an amorphous structure. P in the alloys acted grain refining and phase changing element. The resistivity of the electrodeposited alloys increased with P contents. Effective permeability at high frequency (above 1 MHz) increased with P contents up to 2 wt% and this was ascribed to the easier magnetization rotation owing to the reduction of eddy current. Effective permeability decreased with P contents above 3 wt% and this was ascribed to the transformation of the ferromagnetism of Fe-45 wt%Ni alloy gradually into paramagnetism with the introduction of P into the electrodeposited alloy matrix.

A Study on the Mechanical and Thermal Properties of Spray-cast Hypereutectic Al-Si-Fe Alloys (분사주조한 과공정 Al-Si-Fe 합금의 기계적 및 열적 특성에 관한 고찰)

  • Park, Jae-Sung;Ryou, Min;Yoon, Eui-Pak;Yoon, Woo-Young;Kim, Kwon-Hee;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.26 no.3
    • /
    • pp.123-128
    • /
    • 2006
  • Mechanical and thermal properties of spray-cast hypereutectic Al-20wt.%Si-xwt.%Fe alloys (x=0, 1, 3, 5) were investigated. After the spray-casting, hot extrusion was performed at $400^{\circ}C$. Intermetallic compound (${\beta}-Al_5FeSi$) and primary Si are observed in the spray-cast aluminum alloys. The size of primary Si and intermetallic compound of the spray-aluminum alloys became finer and more uniformly distributed than that of the permanent mold cast ones. Ultimate tensile strength of the spray-cast aluminum alloys increased by increasing Fe contents, but that of the permanent mold cast aluminum alloys decreased by increasing Fe contents possibly due to increased amount of coarse intermatallic compound. The coefficient of thermal expansion (CTEs) of the aluminum alloys became lower with finer primary Si and intermetallic compound, and this is attributed to the increased amount of interfacial area between the aluminum matrix and the phases of finer Si and intermetallic compound.

HDDR Characteristics and Magnetic Properties of Nd15(Fe1-xCox)77B8(x=0-0.6) Alloys

  • Kwon, H.W.
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.127-131
    • /
    • 2002
  • HDDR characteristics and magnetic properties of $Nd_{15}{(Fe_{1-x}Co_{x})}_{77}B_{8}$(x=0-0.6) alloys were investigated. The effect of applying magnetic field during the recombination step on the anisotropic nature of the HDDR-treated material was also examined. The $Nd_{15}{(Fe_{1-x}Co_{x})}_{77}B_{8}$ phase in the Nd-Fe-B alloys with high Co-substitution alloy had remarkably enhanced phase stability. The $Nd_{15}{(Fe_{1-x}Co_{x})}_{77}B_{8}$(x=0-0.6) alloys with high Co-substitution could be HDDR-treated successfully by only using high pressure hydrogen. However, these alloys had no appreciable coercivity. The poor coercivity of the HDDR-treated $Nd_{15}{(Fe_{1-x}Co_{x})}_{77}B_{8}$(x=0-0.6) alloys with high Co-substitution was attributed to the $Nd{(Fe,Co)}_2$ phase in the alloys. The magnetic filed applied during the recombination step had little effect on the anisotropic nature of the HDDR-treated powder.

Corrosion characterization of Fe-aluminide alloys with various sulphuric acid solution ($H_2SO_4$ 수용액 변화에 따른 철 알루미나이드 합금의 부식특성)

  • Lee, B.W.;Choi, H.L.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.83-88
    • /
    • 2006
  • Corrosion characterization of Fe-XAl-0.3Y(X=5, 10, 14 wt%) alloys in $0.1{\sim}1N$ sulphuric acid at room temperature was studied using potentiodynamic techniques. The morphology and components of corrosion products on surface of Fe-aluminide alloys were investigated using SEM/EDX, XRD. The potentiodynamic polarization curve of alloys exhibited typical active, passive, transpassive behaviour. Corrosion potential($E_{corr}$) and corrosion current density($I_{corr}$) values of Fe-XAl-0.3Y alloys followed linear rate law. $E_{corr}$ of 10Al alloy and 14Al alloy was ten times lower than 5Al alloy. Icorr of 14Al alloy was five times lower than 5Al alloy. The passive film on the surface of Fe-5Al-0.3Y alloy was formed iron oxide. Fe-10Al-0.3Y and Fe-14Al-0.3Y alloys passive films were aluminium oxide. especially, Fe-14Al-0.3Y alloy showed good corrosion resistance in $0.1{\sim}1N$ sulphuric acid. This is attributed to the forming of protective $Al_2O_3$ oxide on the surface of Fe-14Al-0.3Y alloy.

  • PDF