• 제목/요약/키워드: Fe addition

검색결과 1,972건 처리시간 0.028초

Effects of Fe and Cu Addition on the Microstructure and Tensile Properties of Al-Si-Mg Alloy for Compound Casting (복합주조용 Al-Si-Mg합금의 미세조직 및 인장성질에 미치는 Fe 및 Cu 첨가의 영향)

  • Kim, Jeong-Min;Jung, Ki-Chae;Kim, Chae-Young;Shin, Je-sik
    • Journal of Korea Foundry Society
    • /
    • 제41권1호
    • /
    • pp.3-10
    • /
    • 2021
  • In the compound casting between the aluminum alloy and the cast iron, the iron component may be dissolved from the cast iron during the process and mixed into the aluminum melt, thereby forming various iron-containing intermetallic compounds and significantly deteriorating the tensile properties of the aluminum alloy. On the other hand, unlike Fe, which is added as an impurity, Cu is added to improve the mechanical properties of the aluminum alloy. In this study, the change in microstructure and tensile properties of aluminum alloys due to the addition of Fe and Cu was investigated. A large amount of iron-containing compounds such as coarse Al5FeSi phases were formed when the iron content was 1% or more, and the tensile properties were significantly reduced. In the case of the aluminum alloy to which Cu was added, an Al2Cu phase was additionally formed and the tensile strength was clearly improved.

Magnetic and Magnetostrictive Properties of Amorphous Sm-Fe and Sm-Fe-B Thin Films

  • Choi, Y.S.;Lee, S.R.;Han, S.H.;Kim, H.J.;Lim, S.H.
    • Journal of Magnetics
    • /
    • 제3권2호
    • /
    • pp.55-63
    • /
    • 1998
  • Magnetic and magnetostrictive properties of amorphous Sm-Fe and Sm-Fe-B thin films are systematically investigated over a wide composition range from 14.1 to 71.7 at.% Sm. The films were fabricated by rf magnetron sputtering using a composite target composed of an Fe (or Fe-B) plate and Sm chips. The amount of B added ranges from 0.3 to 0.8 at. %. The microstructure, examined by X-ray diffraction, mainly consists of an amorphous phase in the intermediate Sm content range from 20 to 45 at.%. Together with an amorphous phase, crystalline phases of Fe and Sm also exist at low and high ends of the Sm content, respectively. Well-developed in-plane anisotropy is formed over the whole compositionrange, except for the low Sm content below 15 at.% and the high Sm content above 55 at %. As the Sm content increases, the saturation magnetization decreases linearly and the coercive force tends to increase, with the exception of the low Sm content where very large magnitudes of the saturation magnetization and the coercive force are observed due to the existence of the crystalline $\alpha$-Fe phase. The coercive force is affected rather substantially by the B addition, resulting in lower values of the coercive force in the practically important Sm content range of 30 to 40 at.%. Good magnetic softness indicated by well-developed in-plane anisotropy, a square-shaped hysteresis loop and a low magnitude of the coercive force results in good magnetostrictive characteristics in both Sm-Fe-B thin films. The magnetostrictive characteristics, particularly at low magnetic fields, are further improved by the addition of B; for example, at a magnetic field of 100 Oe, the magnitude of magnetostriction is -350 ppm in a Sm-Fe thin film and it is -470 ppm in a B containing Sm-Fe thin film.

  • PDF

The Presence and Role of Intergranular Phase in Nd8Fe86-xNbxB6 (x = 0, 1, 2, 3) Nanocomposite Magnet Characterized by Mossbauer Spectroscopy

  • Han, Jong-Soo;Yang, Choong-Jin;Park, Eon-Byeung;Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • 제10권1호
    • /
    • pp.14-22
    • /
    • 2005
  • Precisely refined Mossbauer study and nano structure observation revealed that intergranular phase formed between a-Fe and Nd₂Fe14B phase in NdFeNbB alloys plays a significant role on the magnetic properties. The intergranular interaction was characterized in term of Henkel Plot (δM plot), and hyperfine field, quardrupole splitting and isomer shift were refined to predict the presence and role of the intergranular phase. By the addition of Nb into Nd8Fe86B6 composition, coercivity was found to increase by 25% due to the refinement of average grain size of both the soft and hard magnetic phases which was decreased from 50 nm of virgin Nd/sub 8/Fe/sub 86/B/sub 6/ to 25 nm in Nd8Fe 85Nb₁B6 alloys. The role of Nb addition was confirmed to stabilize the Nd₂Fe14B lattice preventing from thermal vibration of the corresponding sites substituted Fe by Nb atoms in all sites in the Nd₂Fe14B lattice. The enhanced coercivity was originated from the exchange hardening of soft and amorphous phases surrounding the hard magnetic Nd₂Fe14B crystal.

Magnetic and Magnetostrictive Properties of Amorphous Tb-Fe- and Tb-Fe-B Thin Films

  • Park, Y. S.;Lee, S. R.;S. H. Han;Kim, H. J.;S. H. Lim
    • Journal of Magnetics
    • /
    • 제2권3호
    • /
    • pp.76-85
    • /
    • 1997
  • Magnetic and magnetostrictive properties of Tb-Fe and Tb-Fe-B thin films are systematically investigated over a wide composition range from 40.2 to 68.1 at. % Tb. The films were fabricated by rf magnetron sputtering using a composite target which consists of an Fe plate and Tb chips. The microstructure, examined by X-ray diffraction, mainly consists of an amorphous phase and, at high Tb contents, a pure Tb phase also exists. A progressive change in the direction of anisotropy from the perpendicular to in-plane occurs as the Tb content increases and the boundary at which the anisotropy change occurs shifts significantly towards to higher Tb contents with the addition of B. The saturation magnetization exhibits maxima at the Tb contents of 42 and 48 at. % for Tb-Fe and Tb-Fe-B thin films, respectively, and it is decreased by the addition of B. The coercive force, measured in the easy direction, decreases monotonically with the Tb content. Excellent magnetostrictive characteristics, particularly at low magnetic fields, are achieved in both Tb-Fe and Tb-Fe-B thin films; for example, a magnetostriction of 138 ppm is obtained in a Tb-Fe-B thin film at a magnetic field as low as 30 Oe. The excellent magnetostrictive properties of the present thin films are supported by the equally excellent magnetic softness, the coercivity below 10 Oe and a typical squared-loop shape with the saturation field as low as 1 kOe. Due to the excellent low field magnetostrictive characteristics, the present Tb-Fe based thin films are thought to be suitable for Si based microdevices.

  • PDF

The Effects of Hydroxyl Radical Generation by Means of the Addition of $H_2O_2$ and $Fe^{3+}-EDTA$ in the Electron-beam Process (전자빔 공정에서 $H_2O_2$$Fe^{3+}-EDTA$의 첨가가 수산화라디칼 생성에 미치는 영향)

  • Kwon, Bumgun;Kwon, Joongkuen;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • 제13권10호
    • /
    • pp.69-76
    • /
    • 2012
  • This study focuses both on the quantitative measurement of hydroxyl radicals formed by an electron beam (E-beam) process and on the decomposition of pentachlorophenol(PCP) in the presence of $H_2O_2$ and $Fe^{3+}-EDTA$ as additives. To attain this objective, the quantitative measurement of hydroxyl radical was performed with the hydroylation of benzoic acid (BA), producing hydroxybenzoic acid (OHBA). As a result, the concentrations of hydroxyl radical measured were lower than those of hydroxyl radical predicted. Probably, it indicates that the reactive species generated during E-beam irradiation are able to scavenge the hydroxyl radicals. In particular, the degradation of PCP was promoted by the addition of $H_2O_2$ (< 1mM). On the other hand, its degradation as well as the generation of chloride ions as a by-product was inhibited by the addition of $H_2O_2$ (> 1mM), and thus carbon yield(%) of oxalic acid as a by-product was increased. During E-beam irradiation the addition of $Fe^{3+}-EDTA$ effectively decomposed the PCP, thus increasing the G-values. Considering the formation of OHBA and the decomposition of PCP, these results suggest that the addition of $Fe^{3+}-EDTA$ in the E-beam process can produce the further hydroxyl radicals and enhance the efficiency of PCP decomposition at low dose.

Phase transition of (Bi, Pb)-2223 superconductor induced by Fe3O4 addition

  • Ko, Y.J.;Oh, J.Y.;Song, C.Y.;Yang, D.S.;Tran, D.H.;Kang, B.
    • Progress in Superconductivity and Cryogenics
    • /
    • 제21권4호
    • /
    • pp.1-5
    • /
    • 2019
  • We investigated the effect of Fe3O4 addition on the critical temperature of (Bi, Pb)-2223 polycrystalline samples. Bi1.6Pb0.4Sr2Ca2Cu3O10+δ + x wt. % Fe3O4 (x = 0.0, 0.2, 0.4, 0.6, and 0.8) samples were prepared by using a solid-state reaction method. The analysis of X-ray diffraction data indicates that as Fe3O4 is added, dominant phase of the sample changes from Bi-2223 to Bi-2212 with an increasing Bi-2201 phase. The transition temperature of the samples drastically decreased with the Fe3O4 addition. The resistance data of samples with x = 0.2 and 0.4 showed a double transition indicating a coexistence of Bi-2223 and Bi-2212 phase while the samples with x = 0.6 and 0.8 showed a single transition with a semiconducting behavior. This phase transition may originate from changes in local structure of the Bi-2223 system by Fe3O4 addition. Analysis of the pair distribution function of the Cu-O pair in the CuO2 plane calculated from extended X-ray absorption fine structure data revealed that the oxygen coordination of copper ion changes from CuO4 planar type (x = 0.0 - 0.4) to CuO5 pyramidal type (x = 0.6, 0.8). The correlated Debye-Waller factor, providing information on the atomic disorder within the CuO2 plane, shows an inverse relation to the coordination number. These results indicate that addition of Fe3O4 changes the oxygen distribution around Cu in the CuO2 plane, causing a phase transition from Bi-2223 to more stable Bi-2212/Bi-2201 phases.

${\gamma}-Fe_2O_3$/Pd$ Thick Film Gas Sensors (${\gamma}-Fe_2O_3$/Pd$ 후막형 가스 감지소자)

  • 최동한;이덕동
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • 제27권9호
    • /
    • pp.1393-1401
    • /
    • 1990
  • The physical properties of \ulcorner-Fe2O3 raw materials were investigated. \ulcorner-Fe2O3/Pd thick film gas sensors were fabricated with screen-printing method and their electrical and sensitivity characteristics were analyzed. The irreversible phase transition from \ulcorner-Fe2O3 to \ulcorner-Fe2O3 occured at 500\ulcorner. At this time, the cation of tetrahedral sites moved into the octahedral sites. \ulcorner-Fe2O3 raw materials contained only trivalent and no divalent iron. Thecontents of divalent iron (Fe+\ulcorner were increased as detecting gases were adsorbed. The addition of Pd (1w/o) to \ulcorner-Fe2O3 enhanced the sensitivity to gases. The sentivity of \ulcorner-Fe2O3/Pd(1w/o) thick film to 5000ppm C4H10 was 97% at the operating temperature of 300\ulcorner.

  • PDF

The Effect of Promoter on the SO2-resistance of Fe/zeolite Catalysts for Selective Catalytic Reduction of NO with Ammonia (NO의 암모니아 선택적 촉매환원반응을 위한 철 제올라이트 촉매의 내황성에 미치는 조촉매 효과)

  • Ha, Ho-Jung;Choi, Joon-Hwan;Han, Jong-Dae
    • Clean Technology
    • /
    • 제21권3호
    • /
    • pp.153-163
    • /
    • 2015
  • The effects of H2O and residue SO2 in flue gases on the activity of the Fe/zeolite catalysts for low-temperature NH3-SCR of NO were investigated. And the addition effect of Mn, Zr and Ce to Fe/zeolite for low-temperature NH3-SCR of NO in the presence of H2O and SO2 was investigated. Fe/zeolite catalysts were prepared by liquid ion exchange and promoted Fe/zeolite catatysts were prepared by liquid ion exchange and doping of Mn, Zr and Ce by incipient wetness impregnation. Zeolite NH4-BEA and NH4-ZSM-5 were used to adapt the SCR technology for mobile diesel engines. The catalysts were characterized by BET, X-ray diffraction (XRD), SEM/EDS, TEM/EDS. The NO conversion at 200 ℃ over Fe/BEA decreased from 77% to 47% owing to the presence of 5% H2O and 100 ppm SO2 in the flue gas. The Mn promoted MnFe/BEA catalyst exhibited NO conversion higher than 53% at 200 ℃ and superior to that of Fe/BEA in the presence of H2O and SO2. The addition of Mn increased the Fe dispersion and prevented Fe aggregation. The promoting effect of Mn was higher than Zr and Ce. Fe/BEA catalyst exhibited good activity in comparison with Fe/ZSM-5 catalyst at low temperature below 250 ℃.

Effect of Cr Addition on the High Temperature Deformation Behavior of Fe-Al Intermetallics (Fe-Al 금속간 화합물의 고온변형거동에 미치는 Cr 첨가의 효과)

  • Bang W.;Lim H. T.;Ha T. K.;Song J. H.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.167-171
    • /
    • 2001
  • High temperature deformation behavior of Fe-28Al-5Cr alloy has been investigated known to show anomalous temperature dependence of yield strength. Specifically, the effect of Cr addition has been examined. A series of tensile and load relaxation tests have been carried out to obtain the flow behavior of Fe-28Al-5Cr alloy at the elevated temperatures. The flow curves have then been analyzed using the inelastic deformation theory recently proposed. Firstly, high temperature flow stress of iron aluminides can be resolved into internal stress and frictional stress. Secondly, the temperature corresponding to peak strength gets higher level at faster strain rate, which presumably due to the increased contribution of internal stress in observed flow stress. And thirdly, the alloying of Cr seems to cause solid-solution strengthening of frictional stress level and the elevation of 2nd order transition temperature. In this analogy, Fe-28Al-5Cr exhibits better strength especially at relatively higher temperature and lower strain rate than Fe-28Al.

  • PDF

SOFT MAGNETISM OF Co-Zr AND Fe-Co FILMS WITH LARGE SATURATION MAGNETIZATION

  • Suemitsu, Katsumi;Nakagawa, Shigeki;Naoe, Masahiko
    • Journal of the Korean institute of surface engineering
    • /
    • 제29권6호
    • /
    • pp.628-633
    • /
    • 1996
  • Large saturation magnetization $4pM_s$ is essentially required for soft magnetic thin layers used in magnetic recording devices. Amorphous Co-based alloys and Fe-Co alloys may be regarded as one of the candidates for soft magnetic materials which possess large $4\piM_s$. Some preparation process to improve soft magnetism of these films were performed in this study. Addition of Ta seemed to be effective to change the magnetostriction constant $\lambda$ from positive value to negative one. The magnetoelastic energy $K_e$ is strongly dependent on $\lambda$. $(Co_{95.7}Zr_{4.3})_{100-x}Ta_x$ films with $K_e$ of negative value have sufficiently soft magnetic characteristics. $Fe_{90}Co_{10}$ alloy exhibits extremely large $4\piM_s$, of about 24 kG. Addition of N and Ta to $Fe_{90}Co_{10}$ films improved the soft magnetism of them. The $Fe_{82.0}Co_{7.6}Ta_{10.4}$:N/Ti multilayered films exhibit better soft magnetic properties and better thermal stability than Fe-Co-Ta:N singlelayer films.

  • PDF