• Title/Summary/Keyword: Fe 및 P 분리

Search Result 179, Processing Time 0.029 seconds

Characteristics for Heavy Metal Pollution in Road Dust from Daebul Industrial Complex: Classification by Particle Size and Magnetic Separation (대불산업단지 도로먼지 내 중금속류 오염 특성: 입도와 자성에 따른 구분)

  • Jeong, Hyeryeong;Choi, Jin Young;Ra, Kongtae
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.4
    • /
    • pp.252-271
    • /
    • 2020
  • In this study, we investigated physical and chemical properties such as grain size, heavy metal pollution, magnetic properties, and their environmental impacts of road dusts (RD) collected from 14 sampling points in Daebul industrial Complex. Heavy metal concentrations in RD were in the order of Fe>Zn>Cu>Pb>Cr>Ni>As>Cd>Hg, and this pollution pattern was related to major industries and traffic activities in this area. The results of the correlation analysis between heavy metal elements and particle size in RD showed that Fe and all of analyzed heavy metals had a significant correlation with each other and metal concentrations had a significantly negative correlation (p<0.05). However, due to the input of large metal particles some heavy metal concentrations in the particle fraction of >1000 ㎛ were highest. Pollution load per unit area of this fraction was the highest among the grain size fractions. Cr, Ni, Cu, Zn, Cd, Pb levels in RD decreased and the levels of Cr, Ni, Cu, Zn, Cd, and Pb were reduced to 85 (As) -22 (Ni)% of the whole after removal of MFs fraction from RD. The mean heavy metal levels in the study area did not exceed the soil contamination guide value of Korea, indicating that heavy metal levels in RD were not a concern. However, at some sampling points, Zn concentrations were exceeded the soil contamination guide value for the 3rd areas of Korea and this result indicated that further studies of the impact of RD on the surrounding environment through re-suspension or non-point pollution, and of effective management methods are required.

Purification and Characterization of a Chitinolytic Enzyme Produced by Bacillus licheniformis GA9 (Bacillus licheniformis GA9가 생산하는 키틴 분해효소의 정제 및 특성)

  • Hwang, Dong Ho;Hong, Sung Wook;Hwang, Hyung seo;Chung, Kun Sub
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.470-478
    • /
    • 2016
  • A bacterium producing a large amount of chitinolytic enzyme was isolated from the intestinal tract of earthworm. The isolate was identified as Bacillus licheniformis by 16S ribosomal RNA analysis and designated as B. licheniformis GA9. The enzyme was purified by 40-60% ammonium sulfate precipitation, diethyl-aminoethyl groups exchange chromatography, and gel filtration chromatography. The molecular weight was estimated to be 52.1 kDa and the N-terminal amino acid sequence was D-S-G-K-N-G-K-I-I-R-Y-YP-I-R. The optimum activity of the purified chitinolytic enzyme was shown at pH 5.0 and $40^{\circ}C$, and the enzyme was stable in the ranges of $20-50^{\circ}C$ and pH 5.0-6.0. Enzyme activity was increased by $Co^{2+}$, while it was inhibited by $Cu^{2+}$ and $Fe^{2+}$. But it was recovered by chelating metals with ethylenediaminetetraacetic acid. The $K_m$ and $V_{max}$ values of the purified enzyme were 4.02 mg/ml and 0.52 mg/min, respectively. The chitinolytic enzyme characterized in this study has potential applications in areas such as biotechnology, biomedicine, agriculture, and nutrition.

Isolation and Characteristics of a Phenol-degrading Bacterium, Rhodococcus pyridinovorans P21 (페놀분해세균 Rhodococcus pyridinovorans P21의 분리 및 페놀분해 특성)

  • Cho, Kwang-Sik;Lee, Sang-Mee;Shin, Myung-Jae;Park, Soo-Yun;Lee, Ye-Ram;Jang, Eun-Young;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.988-994
    • /
    • 2014
  • The effluents of chemical and petroleum industries often contain non-biodegradable aromatic compounds, with phenol being one of the major organic pollutants present among a wide variety of highly toxic organic chemicals. Phenol is toxic upon ingestion, contact, or inhalation, and it is lethal to fish even at concentrations as low as 0.005 ppm. Phenol biodegradation has been studied in detail using bacterial strains. However, these microorganisms suffer from substrate inhibition at high concentrations of phenol, whereby growth is inhibited. A phenol-degrading bacterium, P21, was isolated from oil-contaminated soil. The phenotypic characteristics and a phylogenetic analysis indicated the close relationship of strain P21 to Rhodococcus pyridinovorans. Phenol biodegradation by strain P21 was studied under shaking condition. The optimal conditions for phenol biodegradation by strain P21 were 0.09% $KNO_3$, 0.1% $K_2HPO_4$, 0.3% $NaH_2PO_4$, 0.015% $MgSO_4{\cdot}7H_2O$, 0.001% $FeSO_4{\cdot}7H_2O$, initial pH 9, and $20-30^{\circ}C$, respectively. When 1,000 ppm of phenol was added to the optimal medium, the strain P21 completely degraded it within two days. Rhodococcus pyridinovorans P21 could grow in up to 1,500 ppm of phenol as the sole carbon source in a batch culture, but it could not grow in a medium containing above 2,000 ppm. Moreover, strain P21 could utilize toxic compounds, such as toluene, xylene, and hexane, as a sole carbon source. However, no growth was detected on chloroform.

Cloning of α-Amylase Gene from Unculturable Bacterium Using Cow Rumen Metagenome (소 반추위 메타게놈에서 비배양 세균의 α-amylase 유전자 클로닝)

  • Cho, Soo-Jeong;Yun-Han-Dae
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.1013-1021
    • /
    • 2005
  • The metagenomes of complex microbial communities are rich sources of novel biocatalysts. The gene encoding an extracellular $\alpha$-amylase from a genomic DNA of cow rumen was cloned in Escherichia coli DH5$\alpha$ and sequenced. The $\alpha$-amylase (amyA) gene was 1,893 bp in length, encoding a protein of 631 amino acid residues with calculated molecular weight of 70,734 Da. The molecular weight of the enzyme was estimated to be about 71,000 Da by active staining of a SDS-PACE. The enzyme was 21 to $59\%$ sequence identical with other amyloyltic enzymes. The AmyA was optimally active at pH 6.0 and $40\%$. The AmyA had a calculated pI of 5.87. AmyA expressed in E. coli DH5$\alpha$ was enhanced in the presence of $Mg^{2+}$ (20 mM) and $Ca^{2+}$ (30 mM) and inhibited in the presence of $Fe^{2+}$ and $Cu^{2+}$. The origin of amyA gene could not be confirmed by PCR using internal primer of amyA gene from extracted genomic DNA of 49 species rumen culturable bacteria so far. An amyh is supposed to obtained from unculturable rumen bacterium in cow rumen environment.

Increased Production of an Alkaline Protease from Bacillus clausii I-52 by Chromosomal Integration (Bacillus clausii I-52의 Chromosomal Integration에 의한 Alkaline Protease의 생산성 향상)

  • Joo, Han-Seung;Park, Dong-Chul;Choi, Jang-Won
    • Journal of agriculture & life science
    • /
    • v.46 no.1
    • /
    • pp.163-176
    • /
    • 2012
  • TTo increase productivity of a strong extracellular alkaline protease (BCAP), stable strains of Bacillus clausii I-52 carrying another copy of BCAP gene in the chromosome were developed. Integrative vector, pHPS9-fuBCAP carrying BCAP promoter, ribosome binding site, signal sequence and active protease gene was constructed and transferred into B. clausii I-52, and integration of the constructed plasmid into chromosome was identified by PCR. An investigation was carried out on BCAP production by B. clausii I-52 and transformant C5 showing the highest relative activity of alkaline protease using submerged fermentation. Maximum enzyme activity was produced when cells were grown under the submerged fermentation conditions at $37^{\circ}C$ for 48 h with an aeration rate of 1 vvm and agitation rate of 650 rpm in a optimized medium (soybean meal 2%, wheat flour 1%, sodium citrate 0.5%, $K_2HPO_4$ 0.4%, $Na_2HPO_4$ 0.1%, NaCl 0.4%, $MgSO_47H_2O$ 0.01%, $FeSO_47H_2O$ 0.05%, liquid maltose 2.5%, $Na_2CO_3$ 0.6%). A protease yield of approximately 134,670U/ml was achieved using an optimized media, which show an increase of approximately 1.6-fold compared to that of non-transformant (83,960 U/ml). When the stability of transformant C5 was examined, the integrated plasmid pHPS9-fuBCAP was detected in the transformant after cultivation for 8 days, suggesting that it maintained stably in the chromosomal DNA of transformant C5.

Studies on the Characterization of Carboxyl Proteinase in Poria cocos (복령의 Carboxyl Proteinase의 분리 정제 및 그 성질에 관한 연구(II))

  • Min, Tae-Jin;Park, Sang-Shin;Moon, Soon-Ku
    • The Korean Journal of Mycology
    • /
    • v.14 no.2
    • /
    • pp.101-107
    • /
    • 1986
  • The properties of carboxyl proteinase which was contained in Poria cocos (Schw.) Wolf were investigated by means of the purification with 0.65 ammonium sulfate saturation, DEAE cellulose and Sephadex G-75 gel filtration. This enzyme was found to hydrolyze only peptide bond between glutamyl-L-tyrosine of carbobenzoxy-L-glutamyl-L-tyrosine among the synthetic substrates of carbobenzoxy-L-glutamyl-L-tyrosine, hippuryl- L-phenylalanine and hippuryl-L-arginine. This enzyme was inhibited by $Zn^{+2},\;Fe^{+2},\;Ca^{+2},\;CN^{-1},\;P_2O_7^{-4}$ ions, but stimulated by $Hg^{+2}$ ion. Also, this enzyme was inhibited by organic compounds such as L-lysine, L-phenylalanine, hippuryl-L-phenylalanine, diazoacetyl-DL-norleucine methyl ester (DAN) and 1,2-epoxy-3-(P-nitrophenoxy)propane(EPNP). In particular, the activity was inhibited by L-lysine till 20 minutes of preincubation time rapidly, and by DAN in the presence of $Cu^{+2}$ ion more rapidly after 30 minutes than DAN in the absence of $Cu^{+2}$ ion. L-Lysine was found to be a competitive inhibitor and its $K_i$ value was determined to be 0.12 mmole by Dixon plot.

  • PDF

Isolation, Purification and Characterization of Phytase from Asperfillus sp. (Aspergillus속 균주가 생산하는 Phytase의 분리 정제 및 특성)

  • 천성숙;조영제;차원섭;이희덕;이선호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.1
    • /
    • pp.38-45
    • /
    • 1998
  • To extract insoluble proteins and to improve funtional properties of abolished proteins, an phytase producing Aspergillus sp. SM-15 was isolated from soil. The enzyme was purified and its enzymological characteristics were investigated. Phytase production reached to maximum when the wheat bran medium containing 1% mannose, 1% yeast extract, 1% (NH4)2HPO4 and 0.2% calcium chloride was cultured for 4 days. Phytase was purified 17.1 fold and specific activity was 244.32unit/mg by a sequencial process of ammonium sulfate fraction, ion exchange chromatography and gel filtrations Pruified enzyme was confirmed as a single band by the polyacrylamide gel electro-phoresis. The molecular weight of phytase was estimated to be 46,000. The optimum pH and temperature for the phytase activity were 5.5 and 5$0^{\circ}C$. The enzyme is stable in pH 4.5~5.5, 6$0^{\circ}C$. The activity of purified enzyme was inhibited by Hg2+ whereas activited by Pb2+ and Fe2+. The activity of phytase was inhibited by the treatment with iodine. The result indicate the possible involvement of histidine at active site. Km and Vmax of the puridied phytase were 37.037mM/L and 159.87umol/min, respectively.

  • PDF

Antioxidant Effects of Fermented Anchovy (멸치액젓의 항산화효과)

  • Park, Jong-Ok;Yoon, Mi-Sun;Cho, Eun-Jung;Kim, Hee-Sook;Ryu, Byung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1378-1385
    • /
    • 1999
  • The antioxidative activity of Fermented Anchovy on linoleic acid autooxidation was investigated in an aqueous system at pH 7.0. All solvent fractions from Fermented Anchovy were exhibited the strong antioxidative activity. Especially, BuOH and aqueous fractions were gained large amounts with strong antioxidative activity. Ultrafiltration, dialysis, heat treatment of aqueous fraction indicated that water-soluble antioxidants of Fermented Anchovy were heat-resistant, amino acid related compounds with smaller molecular weights than 1,000. Unbound fractions from DE-52 anion exchange chromatography were exhibited antioxidative activity with or without $15\;{\mu}M\;Fe^{+++}\;ion$. We were able to purify one methionine derivative from lots of antioxidative substances in Fermented Anchovy aqueous fraction by gel filtration, anion-exchange chromatography, TLC and HPLC, successfully. These data suggest that Fermented Anchovy aqueous fraction is a mixture of fermented small molecules with strong antioxidative activities.

  • PDF

Studies on the Production of Lysine by Fermentation Process (2) -Lysine Production by Auxotrophs- (발효에 의한 라이신(L-Lysine) 생산에 관한 연구 (2) -영양요구성 변이주에 의한 Lysine 생산-)

  • Min, Tae-Ick;Kim, Hang-Mook;Kwon, Tai-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.123-133
    • /
    • 1972
  • Over 90 of lysine producing auxotrophs were obtained from Corynebacterium sp. S-27-12, Brevibacterium flavum ATCC 15168 and Micrococcus glutamicus ATCC 13032 by UV light, $Co^{60}$ irradiation and N-methyl-N'-nitro-N-nitrosoguanidine treatment. One of the mutant, Brev. flavum U46-N59, was identified as a leucine auxotroph and accumulated lysine during flask (500 ml) cultivation (180 strokes/min.) up to 21.6 mg per ml of broth at pH 7.5 and $28^{\circ}C$ after 4 days. The medium consisted of glucose, 100; urea, 10; corn steep liquor, 40; $KH_2PO_4,\;2;\;K_2HPO_4,\;0.5;\; MgSO_4.\;7H_2O,\;0.4;\;antifoam\;S-57,\;1g;\;Fe_2(SO_4)_3.XH-2O,\;10;\; MnCl_2,\;4H_2O,\;10mg;\;biotin,\;30;\;thiamine-HCl,\;100{\mu}g$in 1l of distilled water, and 40 U/ml of penicillin was added after 36 hrs fermentation.

  • PDF

Studies on the Selective Separation and Preconcentration of Cr(VI) Ion by XAD-16-Chromotropic Acid Chelating Resin (XAD-16-Chromotropic Acid 킬레이트 수지에 의한 몇 가지 금속이온의 선택적 분리 및 농축에 관한 연구)

  • Lee, Won;Lee, Chang-Youl;Kim, Mi-Kyoung;Kim, In-Whan
    • Analytical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.199-210
    • /
    • 2004
  • A new polystyrene-divinylbenzene chelating resin containing 4,5-dihydroxy-naphthalene-2,7-disulfonic acid (chromotropic acid : CTA) as functional group has been synthesized and characterized. The sorption and desorption properties of this chelating resin for Cr(III) ion and Cr(VI) ion including nine metal bloodstain. As a results, FOB test kit could be effectively applied to identification of human blood at chelating resin was stable in acidic and alkaline solution. The Cr(VI) ion is selectively separated from Cr (III) ion at pH 2 and the maximum sorption capacity of Cr(VI) ion is 1.2 mmol/g. In the presence of anions such as $F^-$, $SO{_4}^{2-}$, $CN^-$, $CH_3COO^-$, $NO{_3}^-$, the sorption of Cr(VI) ion was reduced but anions such as $PO{_4}^{3-}$ and $Cl^-$ revealed no interference effect. The elution order of metal ions obtained from breakthrough capacity and overall capacity at pH 2 was Cr(VI)>Sn(II)>Fe(III)>Cu(II)>Cd(II)${\simeq}Pb(II){\simeq}Cr(III){\simeq}Mn(II){\simeq}Ni(II){\simeq}Al(III)$. Desorption characteristics for Cr(VI) ion was investigated with desorption agents such as $HNO_3$, HCl, and $H_2SO_4$. It was found that the ion showed high desorption efficiency with 3 M HCl. As the result, the chelating resin, XAD-16-CTA was successfully applied to separation and preconcentration of Cr (VI) ion from several metal ions in metal finishing works.