• Title/Summary/Keyword: Fe (III)

Search Result 566, Processing Time 0.026 seconds

Reduction of Dissolved Fe(III) by As(V)-tolerant Bacteria Isolated from Rhizosphere Soil

  • Khanal, Anamika;Song, Yoonjin;Cho, Ahyeon;Lee, Ji-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.67-72
    • /
    • 2021
  • BACKGROUND: Biological iron redox transformation alters iron minerals, which may act as effective adsorbents for arsenate [As(V)] in the environments. In the viewpoint of alleviating arsenate, microbial Fe(III) reduction was sought under high concentration of As(V). In this study, Fe(III)-reducing bacteria were isolated from the wild plant rhizosphere soils collected at abandoned mine areas, which showed tolerance to high concentration of As(V), in pursuit of potential agents for As(V) bioremediation. METHODS AND RESULTS: Bacterial isolation was performed by a series of enrichment, transfer, and dilutions. Among the isolated strains, two strains (JSAR-1 and JSAR-3) with abilities of tolerance to 10 mM As(V) and Fe(III) reduction were selected. Phylogenetic analysis using 16S rRNA genesequences indicated the closest members of Pseudomonas stutzeri DSM 5190 and Paenibacillus selenii W126, respectively for JSAR-1 and JSAR-3. Ferric and ferrous iron concentrations were measured by ferrozine assay, and arsenic concentration was analyzed by ICP-AES, suggesting inability of As(V) reduction whereas ability of Fe(III) reduction. CONCLUSION: Fe(III)-reducing bacteria isolated from the enrichments with arsenate and ferric iron were found to be resistant to a high concentration of As(III) at 10 mM. We suppose that those kinds of microorganisms may suggest good application potentials for As(V) bioremediation, since the bacteria can transform Fe while surviving under As-contaminated environments. The isolated Fe(III)-reducing bacterial strains could contribute to transformations of iron minerals which may act as effective adsorbents for arsenate, and therefore contribute to As(V) immobilization

Alum$\cdot$철염 응집제의 응집효과 비교

  • 안현화;황병기;이상호
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2000.05a
    • /
    • pp.126-127
    • /
    • 2000
  • Fe(III) 응집제는 pH 5~9범위에서 Al(III)계 응집제보다 보다 우수한 응집효과를 보였으며 또한 pH의 영향을 거의 받지 않는 것으로 나타났다. 잔류 Fe의 경우 응집제 주입농도와 pH 증가에 영향을 거의 받지 않고 저농도의 잔류 Fe농도를 나타낸 반면, Al(III) 응집제는 잔류 Al의 급격한 증가를 나타내었다.

  • PDF

Adsorption Characteristics of Co(II), Ni(II), Cr(III) and Fe(III) Ions onto Cation Exchange Resin - Application to the Demineralizing Process in a Primary Coolant System of PWR (양이온교환수지에 대한 Co(II), Ni(II), Cr(III), Fe(III) 이온의 흡착 특성 - 원자로 일차 냉각재 계통내 탈염 공정에의 적용)

  • Kang, So-Young;Lee, Byung-Tae;Lee, Jong-Un;Moon, Seung-Hyeon;Kim, Kyoung-Woong
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.27-35
    • /
    • 2002
  • Characteristics of Amberlite IRN 77, a cation exchange resin, and the mechanisms of its adsorption equilibria with Co(II), Ni(II), Cr(III) and Fe(III) ions were investigated for the application of the demineralizing process in the primary coolant system of a pressurized water reactor (PWR). The optimum dosage of the resin for removal of the dissolved metal ions at $200mgL^{-1}$ was 0.6 g for 100 mL solution. Most of each metal ion was adsorbed onto the resin in an hour from the start of the reaction. Each metal adsorption onto the resin could be well represented by Langmuir isotherms. However, in the case of Fe(III) adsorption, continuous formation of Fe-oxide or -hydroxide and its subsequent precipitation inhibited the completion of the equilibrium between the metal and the adsorbent Cobalt(II) and Ni(II), which have an equivalent electrovalence, were adsorbed to the resin with a similar adsorption amount when they coexisted in the solution. However, Cr(III) added to the solution competitively replaced Co(II) and Ni(II) which were already adsorbed onto the resin, resulting in desorption of these metals into the solution. The result was likely due to a higher adsorption affinity of Cr(III) than Co(II) and Ni(II). This implies that the interactively competitive adsorption of multi-cations onto the resin should be fully considered for an efficient operation of the demineralizing ion exchange process in the primary coolant system.

Direct Electrode Reaction of Fe(III)-Reducing Bacterium, Shewanella putrefaciens

  • Kim, Byung-Hong;Kim, Hyung-Joo;Hyun, Moon-Sik;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.127-131
    • /
    • 1999
  • Anaerobically grown cells of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-l, were electrochemically active with an apparent reduction potential of about 0.15 V against a saturated calomel electrode in the cyclic voltammetry. The bacterium did not grow fermentatively on lactate, but grew in an anode compartment of a three-electrode electrochemical cell using lactate as an electron donor and the electrode as the electron acceptor. This property was shared by a large number of Fe(III)-reducing bacterial isolates. This is the first observation of a direct electrochemical reaction by an intact bacterial cell, which is believed to be possible due to the electron carrier(s) located at the cell surface involved in the reduction of the natural water insoluble electron acceptor, Fe(III).

  • PDF

A New Functional Model Complex of Extradiol-cleaving Catechol Dioxygenases: Properties and Reactivity of [$Fe^{II}$(BLPA)DBCH]BPh₄

  • Lim, Ji H.;Park, Tae H.;이호진;이강봉;Jang, Ho G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1428-1432
    • /
    • 1999
  • [Fe$^{II}$(BLPA)DBCH]BPh₄ (1), a new functional model for the extradiol-cleaving catechol dioxygenases, has been synthesized, where BLPA is bis(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine and DBCH is 3,5-di-tert-butylcatecholate monoanion. ¹H NMR and EPR studies confirm that 1 has a high-spin Fe(II) (S = 2) center. The electronic spectrum of 1 exhibits one absorption band at 386 nm, showing the yellow color of the typical [Fe$^{II}$(BLPA)] complex. Upon exposure to O₂, 1 is converted to an intense blue species within a minute. This blue species exhibits two intense bands at 586 and 960 nm and EPR signals at g = 5.5 and 8.0 corresponding to the high-spin Fe(III) complex (S = 5/2, E/D = 0.11). This blue complex further reacts with O₂ to be converted to (μ-oxo)Fe$^{III}_2$ complex within a few hours. Interestingly, 1 affords intradiol cleavage (65%) and extradiol cleavage (20%) products after the oxygenation. It can be suggested that 1 undergoes two different oxygenation pathways. The one takes the substrate activation mechanism proposed for the intradiol cleavage products after the oxidation of the $Fe^II\;to\;Fe^{III}$. The other involves the direct attack of O₂ to $Fe^{II}$ center, forming the $Fe^{III}$-superoxo intermediate which can give rise to the extradiol cleavage products. 1 is the first functional Fe(II) complex for extradiol-cleaving dioxygenases giving extradiol cleavage products.

Reactions of As(V) with Fe(II) under the Anoxic Conditions (무산소 조건에서의 Fe(II)와 As(V)의 반응에 관한 연구)

  • Jung, Woo-Sik;Lee, Sang-Hun;Chung, Hyung-Keun;Kim, Sun-Joon;Choi, Jae-Young;Jeon, Byong-Hun
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.487-494
    • /
    • 2009
  • The purpose of this study was to investigate the feasibility of As(V) reduction by aqueous Fe(II), and subsequent As(III) immobilization by the precipitation of As(III) incorporated magnetite-like material [i.e., co-precipitation of As(III) with Fe(II) and Fe(III)]. Experimental results showed that homogeneous As(V) reduction did not occur by dissolved Fe(II) at various pH values although the thermodynamic calculation was in favor of the redox reaction between As(V) and Fe(II) under the given chemical conditions. Similarly, no heterogeneous reduction of sorbed As(V) by sorbed Fe(II) was observed using synthetic iron (oxy)hydroxide (Goethite, ${\alpha}$-FeOOH) at pH 7. Experimental results for the effect of As(V) on the oxidation of Fe(II) by dissolved oxygen showed that As(V) inhibited the oxidation of Fe(II). These results indicate that As(V) could be stable in the presence of Fe(II) under the anoxic or subsurface environments.

Enhancement of Fe Magnetic Moments in Ferromagnetic $Fe_{16}N_2$ (강자성 $Fe_{16}N_2$ 화합물에서의 Fe 자기모멘트의 증가)

  • 민병일;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.9-14
    • /
    • 1991
  • In order to investigate electronic and magnetic properties of $Fe_{16}N_{2}$ ferromagnet, we have performed electronic structure calculations employing the self-consistent local density functional LMTO(linearized muffin tin orbital) band method. We have obtained the ground state parameters, such as band structures, density of states, Stoner parameters, and magnetic moments. Based on these results, we have investigated microscopically the magnetic structure and the enhancement of Fe magnetic moments in this compound. Magnetic moments of 3 types of Fe(Fe I, Fe II and Fe III) in $Fe_{16}N_{2}$ are 2.13, 2.50, and $2.85\;{\mu}_{B}$, respectively. Large enhancement of Fe magnetic moment is observed in Fe II and Fe III, which are located rather far from N. This implies that local environment is very important in determining the Fe magnetic moments in this compound. Our value of average magnetic moment per Fe atom. $2.50\;{\mu}_{B}$, is a bit smaller than the reported estimate, $-3.0\;{\mu}_{B}$, from the experiment.

  • PDF

Comparison of Anodic Community in Microbial Fuel Cells with Iron Oxide-Reducing Community

  • Yokoyama, Hiroshi;Ishida, Mitsuyoshi;Yamashita, Takahiro
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.757-762
    • /
    • 2016
  • The group of Fe(III) oxide-reducing bacteria includes exoelectrogenic bacteria, and they possess similar properties of transferring electrons to extracellular insoluble-electron acceptors. The exoelectrogenic bacteria can use the anode in microbial fuel cells (MFCs) as the terminal electron acceptor in anaerobic acetate oxidation. In the present study, the anodic community was compared with the community using Fe(III) oxide (ferrihydrite) as the electron acceptor coupled with acetate oxidation. To precisely analyze the structures, the community was established by enrichment cultures using the same inoculum used for the MFCs. High-throughput sequencing of the 16S rRNA gene revealed considerable differences between the structure of the anodic communities and that of the Fe(III) oxide-reducing community. Geobacter species were predominantly detected (>46%) in the anodic communities. In contrast, Pseudomonas (70%) and Desulfosporosinus (16%) were predominant in the Fe(III) oxide-reducing community. These results demonstrated that Geobacter species are the most specialized among Fe(III)-reducing bacteria for electron transfer to the anode in MFCs. In addition, the present study indicates the presence of a novel lineage of bacteria in the genus Pseudomonas that highly prefers ferrihydrite as the terminal electron acceptor in acetate oxidation.

Microbial Reduction of Iron Oxides and Removal of TCE using the Iron Reduced by Iron Reducing Bacteria (철 환원 박테리아에 의한 산화철의 환원과 환원된 철을 이용한 TCE 제거에 관한 연구)

  • Shin, Hwa-Young;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.123-129
    • /
    • 2005
  • In situ permeable reactive barrier (PRB) technologies have been proposed to reductively remove organic contaminants from the subsurface environment. The major reactive material, zero valent iron ($Fe^0$), is oxidized to ferrous iron or ferric iron in the barriers, resulting in the decreased reactivity. Iron-reducing bacteria can reduce ferric iron to ferrous iron and iron reduced by these bacteria can be applied to dechlorinate chlorinated organic contaminants. Iron reduction by iron reducing bacteria, Shewanella algae BrY, was observed both in aqueous and solid phase and the enhancement of TCE removal by reduced iron was examined in this study. S. algae BrY preferentially reduced Fe(III) in ferric citrate medium and secondly used Fe(III) on the surface of iron oxides as an electron acceptor. Reduced iron formed reactive materials such as green rust ferrihydrite, and biochemical precipitation. These reactive materials formed by the bacteria can enhance TCE removal rate and removal capacity of the reactive barrier in the field.

Formation of Magnetite Using $Fe^{2+}$ and $Fe^{3+}$ Hydroxide ($Fe^{2+}$$Fe^{3+}$ 수산화물을 이용한 마그네타이트 합성)

  • Oh, Jae-Hyun;Hong, Young-Ho;Park, Jung-Hoon;Kim, Mahn
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1346-1354
    • /
    • 1994
  • In this study, the formation of magnetite using Fe(II) and Fe(III) hydroxides was investigated; The effects of hydroxide synthesizing pH and temperature, reaction temperature, and total water volume of hydroxide suspensions on the magnetite formation were studied. And the basic reaction behaviors of magnetite formation was discussed in the view of hydroxide formation reaction of Fe(II) and Fe(III) by titration. The characteristics of products were examined by TEM, VSM, XRD. From these experimental data, solid-solid reaction between Fe(II) and Fe(III) hydroxides is proposed as a new ferrite formation mechanism.

  • PDF