• Title/Summary/Keyword: Fe (III)

Search Result 566, Processing Time 0.024 seconds

Comparison of Al(III) and Fe(III) Coagulants for Improving Coagulation Effectiveness in Water Treatment (정수처리 응집효율 개선을 위한 Al(III)염과 Fe(III)염 응집제의 비교)

  • Han, Seung woo;Kang, Lim seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.6
    • /
    • pp.325-331
    • /
    • 2015
  • The experimental results of the characteristics of aluminum based and ferric based coagulants for the Nakdong River water showed that the main hydrolysis species contained in alum and $FeCl_3$ are monomeric species of 98% and 93.3%, respectively. The PACl of r=1.2 produced by the addition of base contained 31.2% of polymeric Al species and the PACl of r=2.2 contained 85.0% of polymeric Al species, as showing more polymeric Al species with increasing r value. Coagulation tests using Al(III) and Fe(III) salts coagulants for the Nakdong River water showed that the coagulation effectiveness of turbidity and organic matter was high in the order of $FeCl_3$ > PACl (r=2.2) > PACl (r=1.2) > alum. $FeCl_3$ has showed better flocculation efficiency than Al(III) salts coagulants. In addition, in case of Al(III) coagulants, the Al(III) coagulants of higher basicity, which contained more polymeric Al species, resulted in better coagulation efficiency for both turbidity and organic matter removed. The optimum pH range for all of the coagulants investigated was around pH 7.0 under the experimental pH range of 4.0~9.5. Especially, the highest basicity PACl (r=2.2) and $FeCl_3$ were considered as more appropriate coagulants for the removal of turbidity in the case of raw water exhibiting higher pH.

Spectrophotometric Quantitatification of Fe(II) and Fe(III) Ions Using N,N'-bis(4-methoxysalicylidene) phenylendiamine (N,N'-bis(4-methoxysalicylidene) phenylendiamine를 이용한 Fe(II) 및 Fe(III) 이온의 분광학적 분석)

  • Kim, Sun-Deuk;Seol, Jong-Min
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.463-471
    • /
    • 2011
  • A novel $N_2O_2$ Schiff base ligand, N,N'-bis(4-methoxysalicylidene)phenylendiamine(4-$CH_3O$-Salphen), has been synthesized. It has been revealed that the compound is very useful for the spectrophotometric quantification of Fe(II) and Fe(III) ions in aqueous solutions, such as mineral water, hot spring water, sea water, and waste water. The optimum conditions for the quantitative analysis are the followings; [4-$CH_3O$-Salphen]=$4.0{\times}10^{-4}\;M$, DMF/$H_2O$=70/30(v/v), pH=3.4~3.8, T= at $55^{\circ}C$, and prereaction time=1.0 hr. The sample of single valence state was prepared by the preliminary oxidation or reduction using $H_2O_2$ ($5.0{\times}10^{-4}\;M$) and $NH_2OH{\cdot}HCl$ ($5.0{\times}10^{-4}\;M$). The quantitative analyses of Fe(II) and Fe(III) ion were performed by measuring the absorbance at 434 nm and 456 nm, respectively. The estimated mean values agreed well with the standard values within the range of 2.00~6.90%. The limit of detection was 27.9 ng/mL for Fe(II) and 55.8 ng/mL for Fe(III).

A New Fe (III)-Selective Membrane Electrode Based on Fe (II) Phthalocyanine

  • Ozer, Tugba;Isildak, Ibrahim
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.321-328
    • /
    • 2019
  • A new miniaturized all solid-state contact Fe (III)-selective PVC membrane electrode based on Fe (II) phthalocyanine as a neutral carrier was described. The effects of the membrane composition and foreign ions on the electrode performance was investigated. The best performance was obtained with a membrane containing 32% poly (vinyl chloride), 64% dioctylsebacate, 3% Fe (II) phthalocyanine, and 1% potassium tetrakis (p-chlorophenyl) borate. The electrode showed near Nernstian response of $26.04{\pm}0.95mV/decade$ over the wide linear concentration range $1.0{\times}10^{-6}$ to $1.0{\times}10^{-1}M$, and a very low limit of detection $1.8{\pm}0.5{\times}10^{-7}M$. The potentiometric response of the developed electrode was independent at pH 3.5-5.7. The lifetime of the electrode was approximately 3 months and the response time was very short (< 7 s). It exhibited excellent selectivity towards Fe (III) over various cations. The miniaturized all solid-state contact Fe (III)-selective membrane electrode was successfully applied as an indicator electrode for the potentiometric titration of $1.0{\times}10^{-3}M$ Fe (III) ions with a $1.0{\times}10^{-2}M$ EDTA and the direct determination of Fe (III) ions in real water samples.

The Separation of the Impurities in Bismuth Metal by Liquid Ion Exchangers and Colorimetric Determination (液狀이온交換體에 依한 蒼鉛中 不純物의 分離定量)

  • Park, Myon-Yong;Nho, Sung-Lin
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.139-141
    • /
    • 1968
  • The extraction curve of metal ions with Amberite LAl-chloroform has been found to be more steeper than with Amberite LAl-xylene or hexane, and the extraction ratio of Zn (II) in 2M HCl solution is 98%. The extraction ratio of As (III) in 9~11M HCl soln., Sb (III) in 2~4M HCl soln., and Fe (III) in 6~10M HCl soln. are 100%. The separated elements from Bi metal were determined by colorimetry, Zn (III) with dithizone, As (III) with Gutzeit method, Sb (III) with brilliant green and Fe (III) with thiocyanate.

  • PDF

Synthesis and Characterization of the Mixed-valence $[Fe^{II}Fe^{III}BPLNP(OAc)_2](BPh_4)_2$ Complex As a Model for the Reduced Form of the Purple Acid Phosphatase

  • Lee, Jae Seung;Jung, Dong J.;Lee, Ho Jin;Lee, Gang Bong;Heo, Nam Hoe;Jang, Ho G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.969-972
    • /
    • 2000
  • [Fe II Fe III $BPLNP(OAc)_2](BPh_4)_2$ (1), a new model for the reduced form of the purple acid phosphatases, has been synthesized by using a dinucleating ligand, 2,6-bis[((2-pyridylmethyl)(6-methyl-2-pyridylmethyl)ami-no)methyl]-4-nitrophenol (HBPLNP) . Complex 1 has been studied by electronic spectral, NMR, EPR, SQUID, and electrochemical methods. Complex 1 exhibits two strong bands at 498 nm $(\varepsilon=$ 2.6 ${\times}10^3M-^1cm-^1)$ and 1363 nm $(\varepsilon=$ 5.7 ${\times}10^2M-^1cm-^1)$ in $CH_3CN.$ These are assigned to phenolate-to-FeIII and intervalence charge-transfer transitions, respectively. NMR spectrum of complex 1 exhibits sharp isotropically shifted resonances, which number is half of those expected for a valence-trapped species, indicating that electron transfer between FeⅡ and FeⅢ centers is faster than NMR time scale at room temperature. Complex 1 undergoes quasireversible one-electron redox processes. The $FeIII_2/FeIIFeIII$ and $FeIIFeIII/FeII_2$ redox couples are at 0.807 and 0.167 V ver-sus SCE, respectively. It has Kcomp = 5.9 ${\times}$10 1s(acetato) ligand combination sta-bilizes a mixed-valence FeIIFeIII complex in the air. Interestingly, complex 1 exhibits intense EPR signals at g = 8.56, 5.45, 4.30 corresponding to mononuclear high-spin FeⅢ species, which suggest a very weak magnetic coupling between the iron centers. Magnetic susceptibility study shows that there is a very weak antiferromag-netic coupling (J = $-0.78cm-^1$, H = $-2JS_1${\times}$S_2)$ between FeII and FeIII centers. Thus, we can suggest that complex 1 has a very weak antiferromagnetic coupling between the iron centers due to the electronic effect of the nitro group in the bridging phenolate ligand.

Removal of Cobalt Ion by adsorbing Colloidal Flotation (흡착 교질 포말부선법에 의한 Cobalt Ion의 제거)

  • 정인하;이정원
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.3-10
    • /
    • 1998
  • Simulated waste liquid containing 50 ppm cobalt ion was treated by adsorbing colloidal flotation using Fe(III) or Al(IlI) as flocclant and a sodium lamyl sulfate as a collector. Parameters such as pH, surfactant concentration, Fe(III) or Al(III) concentration, gas flow rate, etc., W앙e considered. The flotation with Fe(III) showed 99.8% removal efficiency of cohalt on the conditions of initial cobalt ion concentration 50 ppm, pH 9.5, gas flow rate 70 ml/min, and flotation time 30 min. When the waste solution, was treated with 35% $H_2O_2$ prior to adsorbing colloidal flotation, the optimal pH for removing cobalt shifted m to weak alkaline range and flotation could be applied in wider range of pH as compared to non-use of $H_2O_2$. Additional use of 20 ppm Al(III) after precipitation of 50 ppm Co(II) with 50 ppm Fe(III) made the optimal pH range for preferable flotation w wider. Foreign ions such as, $NO_3^-$, $SO_4^{2-}$, $Na^+$, $Ca^{2+}$ were adopted and their effects were observed. Of which sulfate ion was f found to be detrimental to removal of cob퍼t ion by flotation. Coprecipitation of Co ion with Fe(III) and Al(III) resulted in b better removal efficiency of cobalt IOn 피 the presence of sulfate ion.

  • PDF

Application of Gossypol Acetic Acid as a Reagent For Iron (Iii) Ions

  • U. K. Abdurakhmanova;M. R. Askarova;H. K. Egamberdiev
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.1
    • /
    • pp.20-24
    • /
    • 2024
  • This article presents the advantages of utilizing gossypol and its derivatives as reagents for iron (III) (Fe (III)) ions. A novel spectrophotometric method has been developed for the determination of Fe (III) using gossypol derivatives in the presence of a universal buffer solution. Optimal conditions have been identified, and the composition and stability constants of the Fe (III) complex with gossypolacetic acid have been determined.

Comparison of Fe(III) Coagulants and their Characterization for Water Treatment (수처리용 Fe(III)계 응집제의 특성 및 응집특성 비교)

  • Han, Seung Woo;Kang, Lim Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.4
    • /
    • pp.169-176
    • /
    • 2016
  • This research explored the feasibility of preparing and utilizing preformed polymeric solution of Fe(III) as coagulants for water treatment. The differentiation and quantification of hydrolytic Fe(III) species in coagulant was done by utilizing spectrophotometric method based on the interaction of Fe(III) with Ferron as a complexing agent. The properties of the synthesized polymeric iron chloride (PICl) showed that the quantity of polymeric Fe(III) produced at r = 1.5 was 20% of the total iron in solution, as showing maximum contents. Coagulation experiments were conducted under the condition of various coagulant doses and pH for each coagulant prepared. From the comparison of the characterization of coagulation for $FeCl_3$ (r = 0.0) and PICl (r = 0.5, 1.0, 1.5) coagulants, PICl (r = 0.5, 1.0, 1.5) coagulants was found to be more effective than other coagulant for the removal of organic matters. The experimental results for the coagulation tests at various pH ranges showed that the PICl was least affected by the coagulation pH and PICl was very effective for the removal of turbidity and organic materials over wide pH range (pH 4-9) tested.

A Novel Iron(III) Complex with a Tridentate Ligand as a Functional Model for Catechol Dioxygenases: Properties and Reactivity of [Fe(BBA)DBC]$ClO_4$

  • Yun, Seong Ho;Lee, Ho Jin;Lee, Gang Bong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.9
    • /
    • pp.923-928
    • /
    • 2000
  • [FeIII(BBA)DBC]ClO4 as a new functional model for catechol dioxygenases has been synthesized, where BBA is a bis(benzimidazolyl-2-methyl)amine and DBC is a 3,5-di-tert-butylcatecholate dianion.The BBA complex has a structuralfeature that iron cent er has a five-coordinate geometry similar to that of catechol dioxygenase-substrate complex.The BBA complex exhibits strong absorptionbands at 560 and 820 nm in CH3CN which are assigned to catecholate to Fe(III) charge transfer transitions. It also exhibits EPR signals at g = 9.3 and 4.3 which are typical values for the high-spin FeIII (S = 5/2) complex with rhombicsymmetry. Interestingly, the BBA complex reacts with O2 within an hour to afford intradiol cleavage (35%) and extradiol cleavage (60%) products. Surprisingly, a green color intermediate is observed during the oxygenation process of the BBA com-plex in CH3CN. This green intermediate shows a broad isotropic EPR signal at g = 2.0. Based on the variable temperature EPR study, this isotropic signalmight be originated from the [Fe(III)-peroxo-catecholate] species havinglow-spin FeIII center, not from the simple organic radical. Consequently,it allows O2 to bind to iron cen-ter forming the Fe(III)-superoxide species that converts to the Fe(III)-peroxide intermediate. These present data can lead us tosuggest that the oxygen activation mechanism take place for the oxidative cleavingcatechols of the five-coordinate model systems for catechol dioxygenases.

Phosphorous Removal by Al(III) and Fe(III) Coagulants and Visualization of Flocs (Al(III), Fe(III)계 응집제의 인 제거 특성 및 플럭의 가시화)

  • Lee, Sang-Wha;Lee, Ku-Suk;Kang, Ik-Joong;Yoon, Hyon-Hee;Haam, Seung-Joo;Kwak, Jong-Woon
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.74-80
    • /
    • 2005
  • The effective removal of turbid-inducing particulates and algae-inducing phosphorous was systematically investigated by the variation of physico-chemical parameters such as pH, alkalinity, and coagulant types. Al(III)-based and Fe(III)-based coagulants exhibited high removal efficiency of turbidity and phosphorous at optimal pH ranges of 7~9, in which zeta potential nearly approached to zero. The removal rate of turbidity rapidly increased with the increase of coagulant dosages, whereas the removal rate of phosphorous gradually increased due to an equivalent reaction of phosphorous with metallic ions. The generation of flocs during coagulation was visualized by high speed camera (Motion Scope 2000, Redlake Co.), and the images of singular flocs were captured by optical microscope. The flocs generated by Fe(III)-based coagulant was more compact than those induced by Al(III)-based coagulant, and the settlabiltiy of Fe(III)-induced flocs was superior to that of Al(III)-induced flocs.