• Title/Summary/Keyword: Fe/Ni layer

Search Result 337, Processing Time 0.021 seconds

Thermal Stability and High Exchange Coupling Field of Bottom Type IrMn-Pinned Spin Valve (Bottom형 IrMn 스핀밸브 박막의 열적안정성과 높은 교환결합력)

  • Hwang, J.Y.;Kim, M.Y.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.2
    • /
    • pp.64-67
    • /
    • 2002
  • IrMn pinned spin valve (SV) films with stacks of Ta/NiFe/IrMn/CoFe/Cu/CoFe/NiFe/Ta were prepared by dc sputtering onto thermally oxidized Si (111) substrates at room temperature under a magnetic field of about 100 Oe. The annealing cycle number and temperature dependence of exchange coupling field (H$_{ex}$), magnetoresistance (MR) ratio, and coercivity (H$_{c}$) were investigated. By optimizing the process of deposition and post thermal annealing condition, we obtained the IrMn based SV films with MR ratio of 3.6%, H$_{ex}$ of 1180 Oe for the pinned layer. The H$_{ex}$ is stabilized after the second annealing cycle and it is thought that this SV reveals high thermal stability. The H$_{ex}$ maintained its strength of 600 Oe in operation up to 24$0^{\circ}C$ and decreased monotonically to zero at 27$0^{\circ}C$.

Dependence of Coercivity and Exchange Bias by Thickness and Materials of Inserted Layer in [Pd/Co]5/X/FeMn Multilayer with Out-of-plane Magnetic Anisotropy (수직자기이방성을 갖는 [Pd/Co]5/X/FeMn 다층박막에서 삽입층 물질과 두께에 따른 교환바이어스와 보자력의 의존성)

  • Heo, Jang;Park, Dong-Hun;Kang, Wang-Son;Ji, Sang-Hun;Lee, Ky-Am
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.185-189
    • /
    • 2008
  • We observe the change of coercivity and exchange bias, depending on inserting material and thickness in a [Pd(0.6 nm)/$Co(0.2)]_5$/ FeMn(10) multilayer structure with perpendicular anisotropy. When 0.78 and 1.28 nm thick NiFe substitutes for Co in a $[Pd(0.6 nm)Co(0.2)]_4$/Pd(0.6)/NiFe(t)/FeMn(10) structure, we obtain the exchange bias of 360 Oe. In addition, when $Co_8Fe_2$ and $Co_9Fe_1$ are inserted for Co/FeMn interface, we obtain the exchange bias of 380 nm for a 0.68 nm thick $Co_8Fe_2$ and 580 Oe for a 0.52 nm thick $Co_9Fe_1$.

Post Annealing Treatment Introducing an Isotropy Magnetorsistive Property of Giant Magnetoresistance-Spin Valve Film for Bio-sensor (바이오센서용 거대자기저항-스핀밸브 박막이 등방성 자기저항 특성을 갖게 하는 후열처리 조건 연구)

  • Khajidmaa, P.;Park, Kwang-Jun;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.3
    • /
    • pp.98-103
    • /
    • 2013
  • The magnetic easy axis of the ferromagnetic layer for the dual-type GMR-SV (giant magnetoresistance-spin valve) having NiFe/Cu/NiFe/IrMn/NiFe/Cu/NiFe multuilayer structure controlled by the post annealing treatment. The magnetoresistive curves of a dual-type IrMn based GMR-SV depending on the direction of the magnetic easy axis of the free and the pinned layers are measured by the different angles for the applied fields. By investigating the switching process of magnetization for an arbitrary measuring direction, the optimum annealing temperature having a steady and isotropy magnetic sensitivity of 2.0 %/Oe was $105^{\circ}C$. This result suggests that the in-plane orthogonal magnetization for the dual-type GMR-SV film can be used by a high sensitive biosensor.

Thickness Dependence of Ferromagnetic Resonance Properties in NiFe Thin Films (NiFe 박막의 두께에 따른 강자성 공명 특성 분석)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.37-42
    • /
    • 2013
  • The out-of-plane and in-plane angular dependence of ferromagnetic resonance field was measured in NiFe thin films fabricated by magnetron sputtering. The effective magnetization was obtained from the out-of-plane angular dependence of ferromagnetic resonance field, which was well agreed with calculated one. The decrease of effective magnetization with NiFe thickness was due to the surface anisotropy constant of $K_s=-0.23\;erg/cm^2$. The in-plane uniaxial anisotropy fields were obtained from the in-plane angular dependence of ferromagnetic resonance field. The easy axis of in-plane uniaxial anisotropy field was rotated to the reverse direction of applied magnetic field during sample fabrication, which was explained by the antiferromagnetic NiFeO layer at sample surface.

Effects of Shape Anisotropy on Memory Characteristics of NiFe/Co/Cu/Co Spin Valve Memory Cells (NiFe/Co/Cu/Co 스핀밸브 자기저항 메모리 셀에서 형상자기이방성이 메모리 특성에 미치는 영향)

  • 김형준;조권구;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.6
    • /
    • pp.301-305
    • /
    • 1999
  • NiFe(60$\AA$)/Co(5$\AA$)/Cu(60$\AA$)/Co(30$\AA$) spin valve thin films were patterned into magnetoresistive random access memory (MRAM) cells by a conventional optical lithography process and their output and switching properties were characterized with respect to the cell size and geometry. When 1 mA of constant sense current was applied to the cells, a few or a few tens of mV of output voltage was measured within about 30 Oe of external magnetic field, which is an adequate output property for the commercializing of competitive MRAM devices. In order to resolve the problem of increase in the switching thresholds of magnetic layers with the downsizing of MRAM cells, a new approach using the controlled shape anisotropy was suggested and interpreted by a simple calculation of anisotropy energies of magnetic layers consisting of the cells. This concept gave a reduced switching threshold in NiFe(60$\AA$)/Co(5$\AA$) layer consisting of the patterned cells from about 15 Oe to 5 Oe and it was thought that this concept would be much helpful for the realization of competitive MRAM devices.

  • PDF

Magnetoresistance of Buffer/CoFe/Cu/Co Sandwiches (Buffer 층을 갖는 CoFe/ Cu/ Co 샌드위치 박막의 자기저항 특성)

  • 송은영;오미영;김경민;이장로;김미양;김희중;박창만;이상석;황도근
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.3
    • /
    • pp.146-151
    • /
    • 1997
  • Buffer (t $\AA$)/ CoFe(35$\AA$)/Cu (50$\AA$)/Co (35$\AA$) sandwiches prepared by dc magnetron sputtering on Corning glass substrates using the $Co_{90}Fe_{10}$ and Co layers with different coercivities. Dependence of magnetoresistance on the type and thickness of buffer layers, and on the thickness of Cu and the magnetic layers in buffer/ CoFe/Cu /Co sandwiches were investigated. Magnetoresistance ratio and saturation field $H_s$ increased as thickness of the buffer layer becomes thicker, then decreased smoothly after a maximum value. An improved filed sensitivity was realized with the $Ni_{81}Fe_{19}$ buffer layer.

  • PDF

Characterization of High Temperature Oxide Scales formed on Ni-18%W Coatings (Ni-18%W 코팅의 고온산화막 분석)

  • Ko J. H;Lee D. B
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.281-286
    • /
    • 2004
  • The oxide scales formed on Ni-18W(at.%) coating that was electrodeposited on steel were investigated using XRD, SEM and TEM. The oxide scales consisted mainly of an outer NiO layer, and an inner thick ($NiWO_4$+NiO) mixed layer. The unoxidized coating below the oxide scale was rich in Ni and depleted in W, owing to the consumption of Wand the resultant Ni enrichment. The oxidation resistance of Ni-18W coating was poorer than that of the TiN coating, due to the formation of nonprotective NiWO$_4$. During oxidation, Ni and the substrate element of Fe diffused outward, while oxygen inward, according to the concentration gradients.

Electroless Ni-P Plating and Heat Treatments of the Coating Layer for Enhancement of the Cavitation Erosion Resistance of Vessel Propellers (선박 프로펠러의 케비테이션 침식 저항 향상을 위한 Ni-P 무전해 도금층 형성 및 열처리를 통한 미세조직 제어)

  • Kim, Young-jae;Son, In-Jun;Yi, Seonghoon
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.409-415
    • /
    • 2017
  • For enhanced cavitation erosion resistance of vessel propellers, an electroless Ni-P plating method was introduced to form a coating layer with high hardness on the surface of Cu alloy (CAC703C) used as vessel propeller material. An electroless Ni-P plating reaction generated by Fe atoms in the Cu alloy occurred, forming a uniform amorphous layer with P content of ~10 wt%. The amorphous layer transformed to (Ni3P+Ni) two phase structure after heat treatment. Cavitation erosion tests following the ASTM G-32 standard were carried out to relate the microstructural changes by heat treatment and the cavitation erosion resistance in distilled water and 3.5 wt% NaCl solutions. It was possible to obtain excellent cavitation erosion resistance through careful microstructural control of the coating layer, demonstrating that this electroless Ni-P plating process is a viable coating process for the enhancement of the cavitation erosion resistance of vessel propellers.

Exchange Coupling Field and Thermal Stability of Ni80Fe20/[Ir22/Mn78-Mn]/Co75Fe25 Multilayer Depending on Mn Content (Ni80Fe20/[Ir22/Mn78-Mn]/Co75Fe25 다층박막에서 Mn 함유량에 의존하는 교환결합력과 열적안정성)

  • Kim, B.K.;Lee, J.Y.;Kim, S.S.;Hwang, D.G.;Lee, S.S.;Hwang, J.Y.;Kim, M.Y.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.5
    • /
    • pp.187-192
    • /
    • 2003
  • The magnetic and thermal properties of NiFe/[IrMn-Mn]/CoFe with Mn additions have been studied. As-deposited CoFe pinned layers with [IrMn-Mn]layer had dominantly larger exchange biasing field ( $H_{ex}$) and blocking temperature ( $T_{b}$) than those with pure I $r_{22}$M $n_{78}$ used. The $H_{ex}$ and $T_{b}$ improved with 76.8-78.1 vol% Mn, but those of the NiFe/IrMn/CoFe dropped considerably with more addition of 0.6 vol % Mn. The average x-ray diffraction peak ratios of fcc [(111)CoFe, NiFe]/(111)IrM $n_3$ textures for the Mn inserted total vol of 75.5, 77.5, and 79.3% were about 1.4, 0.8, and 0.6, respectively. For the sample without Mn inserted layer, the $H_{ex}$ between IrMn and CoFe layers was almost zero, but it increased to 100 Oe after annealing of 250 $^{\circ}C$. For as-grown two multilayers samples with ultra-thin Mn layers of 77.5 and 78.7 vol %, the $H_{ex}$s were 259 and 150 Oe, respectively. In case of IrMn with 77.5 vol% Mn, the $H_{ex}$ was increased up to 475 Oe at 350 $^{\circ}C$ but decreased to 200 Oe at 450 $^{\circ}C$, respectively. The magnetic properties and thermal stabilities of NiFe/[IrMn-Mn]/CoFe multilayer were enhanced with Mn additions. In applications where higher $H_{ex}$ and $T_{b}$ are required, proper contents of Mn can be used. be used. used.

Atmospheric Corrosion Process for Weathering Steel

  • Nagano, Hiroo;Yamashita, Masato
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.119-124
    • /
    • 2008
  • Steel is generally not corrosion resistant to water with formation of non protective rusts on its surface. Rusts are composed of iron oxides such as $Fe_3O_4$, $\alpha-$, $\beta-$, $\gamma-$and ${\delta}-FeOOH$. However, steel, particularly weathering steel containing small amounts of Cu, Ni and Cr etc., shows good corrosion resistance against rural, industrial or marine environment. Its corrosion rate is exceedingly small as compared with that of carbon steel. According to the exposure test results undertaken in outdoor environments, the atmospheric corrosion rate for weathering steel is only 1 mm for a century. Atmospheric corrosion for steels proceeds under alternate dry and wet conditions. Dry condition is encountered on steel surface on fine or cloudy days, and wet condition is on rainy or snowy days. The reason why weathering steel shows superior atmospheric corrosion resistance is due to formation of corrosion protective rusts on its surface under very thin water layer. The protective rusts are usually composed of two layer rusts; the upper layer is ${\gamma}-FeOOH$ termed as lepidocrocite, and inner layer is nano-particle ${\alpha}-FeOOH$ termed as goethite. This paper is aimed at elucidating the atmospheric corrosion mechanism for steel in comparison with corrosion in bulky water environment by use of empirical data.The summary is as follows: 1. No corrosion protective rusts are formed on steel in bulky water. 2. Atmospheric corrosion for steel is the corrosion under wetting and drying conditions. Corrosion and passivation occur alternately on steel surface. Steel, particularly weathering steel with small amounts of alloying elements such as Cu, Ni and Cr etc. enhances forming corrosion protective rusts by passivation.