• Title/Summary/Keyword: Fc fusion

Search Result 36, Processing Time 0.023 seconds

Selection Based Cooperative Spectrum Sensing in Cognitive Radio (무선인지시스템을 위한 선택적 협력 스펙트럼 검출 기법)

  • Nhan, Nguyen Thanh;Kong, Hyung-Yun;Koo, In-Soo
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • In this paper, we propose an effective method for cooperative spectrum sensing in cognitive radios where cognitive user(CR) with the highest reliability sensing data is only selected and allowed to report its local decision to FC as only decision making node. The proposed scheme enables CR users to implicitly compare their sensing data reliabilities based on their likelihood ratio, without any collaboration among cognitive radio users. Due to the mechanism, the proposed cooperative scheme can achieves a high spectrum sensing performance while only requiring extremely low cooperation resources such as signaling overhead and cooperative time in comparison with other existing methods such as maximum ratio combination (MRC) based, equal gain combination (EGC) based and conventional hard combination based cooperative sensing methods.

Reinforce Learning Based Cooperative Sensing for Cognitive Radio Networks (인지 무선 시스템에서 강화학습 기반 협력 센싱 기법)

  • Kim, Do-Yun;Choi, Young-June;Roh, Bong-Soo;Choi, Jeung-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1043-1050
    • /
    • 2018
  • In this paper, we propose a reinforce learning based on cooperative sensing scheme to select optimal secondary users(SUs) to enhance the detection performance of spectrum sensing in Cognitive radio(CR) networks. The SU with high accuracy is identified based on the similarity between the global sensing result obtained through cooperative sensing and the local sensing result of the SU. A fusion center(FC) uses similarity of SUs as reward value for Q-learning to determine SUs which participate in cooperative sensing with accurate sensing results. The experimental results show that the proposed method improves the detection performance compared to conventional cooperative sensing schemes.

OsDOR1, a novel glycine rich protein that regulates rice seed dormancy

  • Kim, Suyeon;Huh, Sun Mi;Han, Hay Ju;Cho, Mi Hyun;Lee, Gang Sub;Kim, Beom Gi;Kwon, Taek Yun;Yoon, In Sun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.90-90
    • /
    • 2017
  • Regulation of seed dormancy is important in many grains to prevent pre-harvest sprouting. To identify and understand the gene related to seed dormancy regulation, we have screened for viviparous phenotypes of rice mutant lines generated by insertion of Ds transposon in a Korean Japonica cultivar (Dongjin) background. One of the mutants, which represented viviparous phenotype, was selected for further seed dormancy regulation studies and designated dor1. The dor1 mutant has single Ds insertion in the second exon of OsDor1 gene encoding glycine-rich protein. The seeds of dor1 mutant showed a higher germination potential and reduced abscisic acid (ABA) sensitivity compared to wild type Dongjin. Over-expression of Dor1 complements the viviparous phenotype of dor1 mutant, indicating that Dor1 function in seed dormancy regulation. Subcellular localization assay of Dor1-GFP fusion protein revealed that the OsDor1 protein mainly localized to membrane and the localization of OsDOR1 was influenced by presence of a giberelin (GA) receptor OsGID1. Further bimolecular fluorescence complementation (BiFC) analysis indicated that OsDOR1 interact with OsGID1. The combined results suggested that OsDOR1 regulates seed dormancy by interacting with OsGID1 in GA response. Additionally, expression of OsDOR1 partially complemented the cold sensitivity of Escherichia coli BX04 mutant lacking four cold shock proteins, indicating that OsDOR1 possessed RNA chaperone activity.

  • PDF

The Distribution of Indicator Microorganisms and Identification of Antibiotic Resistant Strains in Domestic Animal Feces (가축 분변 유래 지표미생물 분포 및 항생제 내성 균주의 동정)

  • Kim, Jong-Geu;Lee, Jang-Hoon;Kwon, Hyuk-Ku
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.4
    • /
    • pp.289-297
    • /
    • 2011
  • Objectives: To estimate the microbial contaminant load discharged from livestock farms, we randomly selected livestock farmers of cattle, swine, and fowl and collected bacterial strains from domestic animals' feces and compost samples. Recently, as multi-antibiotic-resistant bacteria and super bacteria showing resistance to a variety of antibiotics have been reported one after another, the ecological and health hazard of antibiotic-resistant bacteria is emerging as an important issue. Methods: Monitored indicator microorganism constituents were totak coliform (TC), fecal coliform (FC), and aerobic bacteria. The multi-antibiotic-resistant bacteria were identified from investigated indicator microorganisms by 16S rRNA sequencing. Results: By microbiological analysis, the largest population of aerobic bacteria ($1.5{\times}10^5$ CFU/g) was found in cattle fecal compost, and total coliforms ($1.1{\times}10^7$ CFU/g) and fecal coliforms ($1.0{\times}10^5$ CFU/g) were found primarily in swine fecal compost, while the lowest population was found in fowl fecal compost. Among the 67 strains separated from aerobic bacteria, five strains expressing high antibiotic resistance were selected in each sample. We found the multi-antibiotic resistant strains to be Shigella boydii, Staphylococcus lentus, Acinetobacter sp. and Brevibacterium luteolum. Conclusions: These results suggest that increasing numbers of multi-antibiotic-resistant bacteria in the environment have a close relation to the reckless use of antibiotics with livestock.

Interleukin-18 Binding Protein (IL-18BP): A Long Journey From Discovery to Clinical Application

  • Soohyun Kim;Hyeon Yu;Tania Azam;Charles A. Dinarello
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.1.1-1.6
    • /
    • 2024
  • IL-18 binding protein (IL-18BP) was originally discovered in 1999 while attempting to identify an IL-18 receptor ligand binding chain (also known as IL-18Rα) by subjecting concentrated human urine to an IL-18 ligand affinity column. The IL-18 ligand chromatography purified molecule was analyzed by protein microsequencing. The result revealed a novel 40 amino acid polypeptide. To isolate the complete open reading frame (ORF), various human and mouse cDNA libraries were screened using cDNA probe derived from the novel IL-18 affinity column bound molecule. The identified entire ORF gene was thought to be an IL-18Rα gene. However, IL-18BP has been proven to be a unique soluble antagonist that shares homology with a variety of viral proteins that are distinct from the IL-18Rα and IL-18Rβ chains. The IL-18BP cDNA was used to generate recombinant IL-18BP (rIL-18BP), which was indispensable for characterizing the role of IL-18BP in vitro and in vivo. Mammalian cell lines were used to produce rIL-18BP due to its glycosylation-dependent activity of IL-18BP (approximately 20 kDa). Various forms of rIL-18BP, intact, C-terminal his-tag, and Fc fusion proteins were produced for in vitro and in vivo experiments. Data showed potent neutralization of IL-18 activity, which seems promising for clinical application in immune diseases involving IL-18. However, it was a long journey from discovery to clinical use although there have been various clinical trials since IL-18BP was discovered in 1999. This review primarily covers the discovery of IL-18BP along with how basic research influences the clinical development of IL-18BP.

Paired Ig-Like Type 2 Receptor-Derived Agonist Ligands Ameliorate Inflammatory Reactions by Downregulating β1 Integrin Activity

  • Lee, Kyoung-Jin;Lim, Dongyoung;Yoo, Yeon Ho;Park, Eun-Ji;Lee, Sun-Hee;Yadav, Birendra Kumar;Lee, Yong-Ki;Park, Jeong Hyun;Kim, Daejoong;Park, Kyeong Han;Hahn, Jang-Hee
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.557-565
    • /
    • 2016
  • The paired immunoglobulin-like type 2 receptor (PILR) family consists of two functionally opposite members, inhibitory $PILR{\alpha}$ and activating $PILR{\beta}$ receptors. PILRs are widely expressed in various immune cells and interact with their ligands, especially CD99 expressed on activated T cells, to participate in immune responses. Here we investigated whether PILR-derived agonists inhibit ${\beta}1$ integrin activity as ligands for CD99. PILR-derived peptides as well as PILR-Fc fusion proteins prevented cell adhesion to fibronectin through the regulation of ${\beta}1$ integrin activity. Especially, PILRpep3, a representative 3-mer peptide covering the conserved motifs of the PILR extracellular domain, prevented the clustering and activation of ${\beta}1$ integrin by dephosphorylating FAK and vinculin, which are major components of focal adhesion. In addition, PILRpep3 inhibited transendothelial migration of monocytes as well as endothelial cell tube formation. Furthermore, upon intraperitoneal injection of PILRpep3 into mice with collagen-induced arthritis, the inflammatory response of rheumatoid arthritis was strongly suppressed. Taken together, these results suggest that PILR-derived agonist ligands may prevent the inflammatory reactions of rheumatoid arthritis by activating CD99.