• Title/Summary/Keyword: Fault-tolerant scheme

Search Result 146, Processing Time 0.025 seconds

Fault-Tolerant Tripod Gaits for Hexapod Robots (육각 보행 로봇의 내고장성 세다리 걸음새)

  • 양정민;노지명
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.689-695
    • /
    • 2003
  • Fault-tolerance is an important design criterion for robotic systems operating in hazardous or remote environments. This paper addresses the issue of tolerating a locked joint failure in gait planning for hexapod walking machines which have symmetric structures and legs in the form of an articulated arm with three revolute joints. A locked joint failure is one for which a joint cannot move and is locked in place. If a failed joint is locked, the workspace of the resulting leg is constrained, but hexapod walking machines have the ability to continue static walking. A strategy of fault-tolerant tripod gait is proposed and, as a specific form, a periodic tripod gait is presented in which hexapod walking machines have the maximum stride length after a locked failure. The adjustment procedure from a normal gait to the proposed fault-tolerant gait is shown to demonstrate the applicability of the proposed scheme.

An Instrument Fault Detection Scheme using Function Observers (함수관측자를 이용한 장치고장검출 기법)

  • Lee, Sang-Moon;Lee, Kee-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.91-97
    • /
    • 2006
  • A major difficulty with the practical application of the multiple observer based IFDI schemes is the computational burden of the residual generation. In this paper, a new residual generator that employs function observers is proposed to reduce the computational burden, and the design methods of the IFDIS, equipped with the residual generator, are presented. The function observers employed in the residual generator can be considered as a dual of the unknown input (function) observer And it can be designed to estimate the measurement errors that are due to sensor faults. The error estimates are further processed to generate the residuals by which reliable fault detection/isolation result car be obtained. The proposed scheme is more useful, in real-time application, than any other multiple state observer based IFDISs. It can be effectively applied to fault tolerant control because the failure effects can be compensated by the use of the estimates of measurement errors. The proposed IFDI scheme is applied to an inverted pendulum control system for the IFDI of failed sensor and fault compensation.

Fault Tolerant Cryptography Circuit for Data Transmission Errors (데이터 전송 오류에 대한 고장 극복 암호회로)

  • You, Young-Gap;Park, Rae-Hyeon;Ahn, Young-Il;Kim, Han-Byeo-Ri
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.10
    • /
    • pp.37-44
    • /
    • 2008
  • This paper presented a solution to encryption and decryption problem suffering data transmission error for encrypted message transmission. Block cypher algorithms experience avalanche effect that a single bit error in an encrypted message brings substantial error bits after decryption. The proposed fault tolerant scheme addresses this error avalanche effect exploiting a multi-dimensional data array shuffling process and an error correction code. The shuffling process is to simplify the error correction. The shuffling disperses error bits to many data arrays so that each n-bit data block may comprises only one error bit. Thereby, the error correction scheme can easily restore the one bit error in an n-bit data block. This scheme can be extended on larger data blocks.

Robust Adaptive Fault-Tolerant Control for Robot Manipulators with Performance Degradation Due to Actuator Failures and Uncertainties (구동기 고장과 불확실성으로 인한 성능 저하를 가지는 로봇 매니퓰레이터에 대한 강인한 적응 내고장 제어)

  • 신진호;백운보
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.173-181
    • /
    • 2004
  • In normal robot control systems without any actuator failures, it is assumed that actuator torque coefficients applied at each joint have normally 1's all the time. However, it is more practical that actuator torque coefficients applied at each joint are nonlinear time-varying. In other words, it has to be considered that actuators equipped at joints may fail due to hardware or software faults. In this work, actuator torque coefficients are assumed to have non-zero values at all joints. In the case of an actuator torque coefficient which has a zero value at a joint, it means the complete loss of torque on the joint. This paper doesn't deal with the case. As factors of performance degradation of robots, both actuator failures and uncertainties are considered in this paper at the same time. This paper proposes a robust adaptive fault-tolerant control scheme to maintain the required performance and achieve task completion for robot manipulators with performance degradation due to actuator failures and uncertainties. Simulation results are shown to verify the fault tolerance and robustness of the Proposed control scheme.

Fault Tolerant Clock Management Scheme in Sensor Networks (센서 네트워크에서 고장 허용 시각 관리 기법)

  • Hwang So-Young;Baek Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.868-877
    • /
    • 2006
  • Sensor network applications need synchronized time to the highest degree such as object tracking, consistent state updates, duplicate detection, and temporal order delivery. In addition, reliability issues and fault tolerance in sophisticated sensor networks have become a critical area of research today. In this paper, we proposed a fault tolerant clock management scheme in sensor networks considering two cases of fault model such as network faults and clock faults. The proposed scheme restricts the propagation of synchronization error when there are clock faults of nodes such as rapid fluctuation, severe changes in drift rate, and so on. In addition, it handles topology changes. Simulation results show that the proposed method has about $1.5{\sim}2.0$ times better performance than TPSN in the presence of faults.

A Fault-tolerant Network-based Mobility Management Scheme for Supporting Multi-media Services (방통융합 멀티미디어 서비스를 제공하기 위한 안정된 네트워크 기반의 이동성 관리 기술)

  • Lee, Sung-Kuen;Lee, Kyoung-Hee;Hong, Kang-Woon;Um, Tai-Won;Lee, Hyun-Woo;Ryu, Won;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3B
    • /
    • pp.526-535
    • /
    • 2010
  • In this paper, we propose the fault-tolerant network-based mobility management scheme for supporting multimedia services of broadcasting & communications convergence in fixed mobile convergence (FMC) networks. The proposed scheme is based on AIMS (Access Independent Mobility Service) which is developed for the mobility support among heterogeneous access networks. To support stable location management and handover control for a MN, the proposed scheme supports stable management of binding information by sensing network attachment and detachment of a mobile node (MN). In addition, the proposed fault-tolerant (FT) AIMS supports a function of message retransmission for the support of handover control message and a function of heartbeat message transmission for the support of stable access network environments to a mobile node. We evaluate and analyze the performance of the proposed scheme through the implementation of AIMS system test-bed.

A Fault-tolerant Inertial Navigation System for UAVs Based on Partition Computing (파티션 컴퓨팅 기반의 무인기 고장 감내 관성 항법 시스템)

  • Jung, Byeongyong;Kim, Jungguk
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.1
    • /
    • pp.29-39
    • /
    • 2015
  • When new inertial navigation systems for an unmanned aerial vehicles are being developed and tested, construction of a fault-tolerant system is required because of various types of hazards caused by S/W and H/W faults. In this paper, a new fault-tolerant flight system that can be deployed into one or more FCCs (Flight Control Computers) is introduced, based on a partition scheme wherein each OFP (Operational Flight Program) partition uses an independent CPU and memory slot. The new fault-tolerant navigation system utilizes one or two FCCs, and executes a primary navigation OFP under development and a stable shadow OFP partition on each node. The fault-tolerant navigation system based on a single FCC can be used for UAVs with small payloads. For larger UAVs, an additional FCC with two OFP partitions can be used to provide both H/W and S/W fault-tolerance. The developed fault-tolerant navigation system significantly removes various hazards in testing new navigation S/Ws for UAVs.

Fault Tolerant Gaits of a Hexapod Robot with a Foot Trajectory Adjustment (다리 궤적을 조정하는 육각 보행 로봇의 내고장성 걸음새)

  • Yang Jung-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.3 s.303
    • /
    • pp.1-10
    • /
    • 2005
  • This paper proposes a novel fault-tolerant gait planning of a hexapod robot considering kinematic constraints. The failure concerned in this paper is a locked joint failure for which a joint in a leg cannot move and is locked in place. It is shown that the conventional fault-tolerant gait of a hexapod robot for forward walking on even terrain may be fallen into deadlock, depending on the configuration of the failed leg. For coping with such deadlock situation, a novel fault-tolerant gait planning is proposed. It can avoid deadlock by adjusting the position of the foot trajectory, and has the same leg sequence and stride length as those of the conventional fault-tolerant gait. To demonstrate the superiority of the proposed scheme, a case study is presented in which a hexapod robot, having walked over even terrain before a locked joint failure, could avoid deadlock and continue its walking by the proposed fault-tolerant gait planning.

Adaptive routing and broadcasting scheme for crossed incoplete ypercube structure (교차된 불완전 하이퍼큐브 구조의 적응적 경로배정 기법과 방송 기법)

  • 임화경;최창훈;김성천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1463-1469
    • /
    • 1996
  • A crossed incoplete hypercube structure is based on previous crossed hypercube structure that reduces the diameter about 50% and has the same complexity with general hypercube and is able to expand to any number of nodes. In this study, we proposed a fault-tolerant adaptive routing scheme and broadcasting scheme. Fault-tolerant adaptive routing scheme is resilient to system faults. And performance evaluation is executed on the proposed sturcture. It is enhanced about 30%.

  • PDF

Fault Tolerant Data Aggregation for Reliable Data Gathering in Wireless Sensor Networks (무선센서네트워크에서 신뢰성있는 데이터수집을 위한 고장감내형 데이터 병합 기법)

  • Baek, Jang-Woon;Nam, Young-Jin;Jung, Seung-Wan;Seo, Dae-Wha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1295-1304
    • /
    • 2010
  • This paper proposes a fault-tolerant data aggregation which provides energy efficient and reliable data collection in wireless sensor networks. The traditional aggregation scheme does not provide the countermeasure to packet loss or the countermeasure scheme requires a large amount of energy. The proposed scheme applies caching and re-transmission based on the track topology to the adaptive timeout scheduling. The proposed scheme uses a single-path routing based on the traditional tree topology at normal, which reduces the dissipated energy in sensor nodes without any countermeasure against packet loss. The proposed scheme, however, retransmits the lost packet using track topology under event occurrences in order to fulfill more accurate data aggregation. Extensive simulation work under various workloads has revealed that the proposed scheme decrease by 8% in terms of the dissipated energy and enhances data accuracy 41% when the potential of event occurrence exists as compared with TAG data aggregation. And the proposed scheme decrease by 53% in terms of the dissipated energy and shows a similar performance in data accuracy when the potential of event occurrence exists as compared with PERLA data aggregation.