• Title/Summary/Keyword: Fault parameters

Search Result 469, Processing Time 0.025 seconds

Sensitivity analysis of variable curvature friction pendulum isolator under near-fault ground motions

  • Shahbazi, Parisa;Taghikhany, Touraj
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.23-33
    • /
    • 2017
  • Variable Curvature Friction Pendulum (VCFP) bearing is one of the alternatives to control excessive induced responses of isolated structures subjected to near-fault ground motions. The curvature of sliding surface in this isolator is varying with displacement and its function is non-spherical. Selecting the most appropriate function for the sliding surface depends on the design objectives and ground motion characteristics. To date, few polynomial functions have been experimentally tested for VCFP however it needs comprehensive parametric study to find out which one provides the most effective behavior. Herein, seismic performance of the isolated structure mounted on VCFP is investigated with two different polynomial functions of the sliding surface (Order 4 and 6). By variation of the constants in these functions through changing design parameters, 120 cases of isolators are evaluated and the most proper function is explored to minimize floor acceleration and/or isolator displacement under different hazard levels. Beside representing the desire sliding surface with adaptive behavior, it was shown that the polynomial function with order 6 has least possible floor acceleration under seven near-field ground motions in different levels.

An Experimental Fault Analysis and Speed Control of an Induction Motor using Motor Solver

  • Sengamalai, Usha;Chinnamuthu, Subramani
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.761-768
    • /
    • 2017
  • This paper deals with the performance analysis of three phase induction motor considering its stator side faults and operating thermal limits. The speed control of induction motor using three phase boost converter operated by a MOSFET switch and a PI controller is demonstrated and presented in this article. IGBTs switches are used for inverter drive mechanism. The experimental result of speed control of induction motor using voltage control technique clearly shows better accuracy than conventional methods of speed control. A three phase 1HP 415V 0.78 kW 4 Pole induction motor is designed using motor solver software. Based on the parameters used in the software thermal analysis of induction motor is done and torque variation with conductor area, efficiency, output curve, losses in different parts of motor has been obtained. Also different types of faults namely under voltage, over voltage, stator imbalanced voltage, turn to turn, locked rotor bar, wrong alignment of rotor bar with respect to stator are studied and fault analysis is performed. Hence comparison is made based upon the results obtained before and after faults.

Slip Movement Simulations of Major Faults Under Very Low Strength

  • Park, Moo-Choon;Han, Uk
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.61-75
    • /
    • 2000
  • Through modeling fault network using thin plate finite element technique in the San Andreas Fault system with slip rate over 1mm/year, as well as elevation, heat flow, earthquakes, geodetic data and crustal thickness, we compare the results with velocity boundary conditions of plate based on the NUVEL-1 plate model and the approximation of deformation in the Great Basin region. The frictional and dislocation creep constants of the crust are calculated to reproduce the observed variations in the maximum depth of seismicity which corresponds to the temperature ranging from $350^{\circ}C$ to $410^{\circ}C$. The rheologic constants are defined by the coefficient of friction on faults, and the apparent activation energy for creep in the lower crust. Two parameters above represent systematic variations in three experiments. The pattern of model indicates that the friction coefficient of major faults is 0.17~0.25. we test whether the weakness of faults is uniform or proportional to net slip. The geologic data show a good agreement when fault weakness is a trend of an additional 30% slip dependent weakening of the San Andreas. The results of study suggest that all weakening is slip dependent. The best models can be explained by the available data with RMS mismatch of as little as 3mm/year, so their predictions can be closely related with seismic hazard estimation, at least along faults where no data are available.

  • PDF

Identification of Open-Switch and Short-Switch Failure of Multilevel Inverters through DWT and ANN Approach using LabVIEW

  • Parimalasundar, E.;Vanitha, N. Suthanthira
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2277-2287
    • /
    • 2015
  • In recent times, multilevel inverters are given high priority in many large industrial drive applications. However, the reliability of multilevel inverters are mainly affected by the failure of power electronic switches. In this paper, open-switch and short-switch failure of multilevel inverters and its identification using a high performance diagnostic system is discussed. Experimental and simulation studies were carried out on five level cascaded H-Bridge multilevel inverter and its output voltage waveforms were analyzed at different switch fault cases and at different modulation index values. Salient frequency domain features of the output voltage signal were extracted using the discrete wavelet transform multi resolution signal decomposition technique. Real time application of the proposed fault diagnostic system was implemented through the LabVIEW software. Artificial neural network was trained offline using the Matlab software and the resultant network parameters were transferred to LabVIEW real time system. In the proposed system, it is possible to precisely identify the individual faulty switch (may be due to open-switch (or) short-switch failure) of multilevel inverters.

A Fault Detection Method for Uncertain Continuous and Discrete-Time Systems (불확실한 연속형 및 이산형 시스템에서의 이상검출법)

  • Hwang, In-Koo;Kwon, Oh-Kyu
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.60-67
    • /
    • 1990
  • This paper proposes a model-based fault detection method for linear/nonlinear system having modelling errors, nonlinearities and measurement noise. The system model is represented by the unified operator [5] in order to apply to both the continuous-time and discrete-time problems. The fault detection method suggested here accounts for the effects of noise, model mismatch and nonlinearities. Modelling errors are depicted by additive forms and the nominal model denominator is fixed via prior experiments in order to quantify the nucertainty bound on the parameter estima-tion. The least square method is used to estimate the numerator parameters of the nominal model. performance than traditional methods.

  • PDF

A Study on Fault Detection using Fuzzy Trend Monitoring Technique of UAV Turbofan Engine (퍼지 경향 감시 기법을 이용한 무인기용 터보팬 엔진의 손상 탐지에 관한 연구)

  • Kong, C.D.;Kho, S.H.;Ki, J.Y.;Kho, H.Y.;Oh, S.H.;Kim, J.H.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.345-349
    • /
    • 2007
  • In this study a fuzzy trend monitoring method for detecting the engine mechanical faults was proposed through analyzing performance trends of measurement data. The trend monitoring is an engine conditioning method which can find engine faults by monitoring important measuring parameters such as fuel flow, exhaust gas temperatures, rotational speeds, vibration. etc. Using engine condition data set as a input which generated by linear regression analysis of real engine instrument data, an application of fuzzy logic in diagnostics estimate a cause of fault in each components.

  • PDF

Analysis of an Active Superconducting Current Controller (ASCC) Considering the Transient Stability and OCR Operation in Transmission and Distribution Systems

  • Gusheh, Ahmad Ghafari;Soreshjani, Mohsen Hosseinzadeh;Rahat, Omid
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.543-550
    • /
    • 2016
  • The Active Superconducting Current Controller (ASCC) is a new type of Superconducting Fault Current Limiters (SFCL) which can limit the fault current in different modes. It also has the particular abilities of compensating active and reactive powers for electrical networks. In this paper, it is confirmed that the performance of ASCC in different operating modes introduces a limiting impedance in series with the network which can even degrade the transient stability and the operation of the Over-Current Relays (OCR) employed in a power system. In addition, the model of a three-phase ASCC is simulated, and the effect of descriptive modes on the current limiting level is investigated. For the transient stability analysis, a single machine-infinite bus system is tested, and the effect of operation modes is studied based on an equal area criterion obtaining the critical time and the critical angle. Modifying the setting parameters of OCR such as time dial and pick-up current, the protective coordination is also studied in different operating modes.

A Study for Earthquake Parameter of Odaesan Earthquake (오대산지진(2007/01/20)의 지진원 특성에 관한 연구)

  • Kim, Jun-Kyoung
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.673-680
    • /
    • 2007
  • The seismic source parameters of the Odaesan earthquake on 20 January 2007, including focal depth, focal mechanism, magnitude, and source characteristics, are analysed using seismic moment tensor inversion. The Green's function for different 3 crust models representing the southern Korean Peninsula are used. Final results show that the event, considering 6 seismic moment tensor elements, is caused by the typical strike slip fault with nearly NNE strike. The focal depth is estimated to be about 11km and 6 seismic moment tensor elements with 7.2% CLVD value shows typical double couple seismic source. The consistent characteristics of the strike and epicenter of the event with Odaesan fault imply that Odaesan earthquake is mainly caused by movement of the Odaesan fault.

Characteristic Investigation of External Parameters for Fault Diagnosis Reference Model Input of DC Electrolytic Capacitor (DC 전해 커패시터의 고장진단 기준모델 입력을 위한 외부변수의 특성 고찰)

  • Park, Jong-Chan;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.186-191
    • /
    • 2012
  • DC Bus Electrolytic capacitors have been widely used in power conversion system because they can achieve high capacitance and voltage ratings with volumetric efficiency and low cost. This type of capacitors have been traditionally used for filtering, voltage smoothing, by-pass and other many applications in power conversion circuits requiring a cost effective and volumetric efficiency components. Unfortunately, electrolytic capacitors are some of the weakest components in power electronic converter. Many papers have proposed different methods or algorithms to determinate the ESR and/or capacitance C for fault diagnosis of the electrolytic capacitor. However, both ESR and C vary with frequency and temperature. Accurate knowledge of both values at the capacitors operating conditions is essential to achieve the best reference data of fault judgement. According to parameter analysis, the capacitance increases with temperature and the ESR decreases. Higher frequencies make the ESR and C to decrease. Analysis results show that the proposed electrolytic capacitor parameter estimation technique can be applied to reference signal of capacitor diagnosis systems successfully.

A case histories on the detection of weak zone using electrical resistivity and EM surveys in planned tunnel construction site (터널 건설 예정지구에서의 전기비저항 탐사와 전자탐사의 적용을 통한 연약대 탐지에 대한 사례 연구)

  • 권형석;송윤호;이명종;정호준;오세영;김기석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.63-70
    • /
    • 2002
  • In tunnel construction, the information on the rock quality and the location of fault or fracture are crucial for economical design of support pattern and for safe construction of the tunnel. The grade of rock is commonly estimated through the observation with the naked eye of recovered cores in drilling or from physical parameters obtained by their laboratory test. Since drilling cost is quite expensive and terrains of planned sites for tunnel construction are rough in many cases, however, only limited information could be provided by core drilling Electrical resistivity and EM surveys may be a clue to get over this difficulty. Thus we have investigated electrical resistivity and EM field data providing regional Information of the rock Quality and delineating fault and fracture over a rough terrain. In this paper, we present some case histories using electrical resistivity and EM survey for the site investigation of tunnel construction. Through electrical resistivity and EM survey, the range and depth of coal seam was clearly estimated, cavities were detected in limestone area, and weak zones such as joint, fault and fracture have been delineated.

  • PDF