• Title/Summary/Keyword: Fault line selection

Search Result 14, Processing Time 0.026 seconds

Single Line-to-ground Fault Location and Information Modeling Based on the Interaction between Intelligent Distribution Equipment

  • Wang, Lei;Luo, Wei;Weng, Liangjie;Hu, Yongbo;Li, Bing
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1807-1813
    • /
    • 2018
  • In this paper, the fault line selection and location problems of single line-to-ground (SLG) fault in distribution network are addressed. Firstly, the adaptive filtering property for empirical mode decomposition is formulated. Then in view of the different characteristics showed by the intrinsic mode functions(IMF) under different fault inception angles obtained by empirical mode decomposition, the sign of peak value about the low-frequency IMF and the capacitance transient energy is chosen as the fault line selection criteria according to the different proportion occupied by the low-frequency components. Finally, the fault location is determined based upon the comparison result with adjacent fault passage indicators' (FPI) waveform on the strength of the interaction between the distribution terminal unit(DTU) and the FPI. Moreover, the logic nodes regarding to fault line selection and location are newly expanded according to IEC61850, which also provides reference to acquaint the DTU or FPI's function and monitoring. The simulation results validate the effectiveness of the proposed fault line selection and location methods.

Fault Phase Selection Algorithm using Unit Vector of Sequence Voltages for Transmission Line Protection (대칭분 전압 단위 벡터를 이용한 송전선로 보호용 고장상 선택 알고리즘)

  • Lee, Myeong-Su;Lee, Jae-Gyu;Kim, Su-Nam;Yu, Seok-Gu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.9
    • /
    • pp.460-466
    • /
    • 2002
  • A reliable fault phase selection algorithm plays a very important role in transmission line protection, Particularly in Extra High Voltage (EHV) networks. The conventional fault phase selection algorithm used the phase difference between positive and negative sequence current excluding load current. But, it is difficult to pick out only fault current since we can not know when a fault occurs and select the fault phase in weak-infeed conditions that dominate zero-sequence current in phase current. The proposed algorithm can select the accurately fault phase using the sum of unit vectors which are calculated by positive-sequence voltage and negative-sequence voltage.

Phase Selection Algorithm Symmetrical Components for Transmission Line Protection (대칭분 전류를 이용한 송전선로 보호용 고장상 선택 알고리즘)

  • Lee, Seung-Jae;Lee, Myoung-Soo;Lee, Jae-Gyu;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.22-24
    • /
    • 2001
  • This paper presents a fault phase selection algorithm for transmission line protection by means of the symmetrical components. Accurate fault phase selection is necessary for collect functioning of transmission line relaying, particularly in Extra High Voltage (EHV) networks. The conventional phase selection algorithm used the phase difference between positive and negative sequence current excluding load current. But, it is difficult to abstract only fault current since we can not know the time which a fault occurs. The proposed algorithm can select the accurately fault phase using fault current contained pre-fault current.

  • PDF

Phase Selection Algorithm using Sequence Voltages for Transmission Line Protection (대칭분 전압을 이용한 송전선로 보호용 고장상 선택 알고리즘)

  • Lee, Myoung-Soo;Kim, Soo-Nam;Lee, Jae-Gyu;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.124-126
    • /
    • 2001
  • A reliable fault type identification (phase selection) plays a very important role in transmission line protection, particularly in Extra High Voltage(EHV) networks. The conventional fault type identification algorithm used the phase difference between positive and negative sequence current excluding load current. But, it is difficult to pick out only fault current since we can not know when a fault occurs and identify the fault type in weak-infeed conditions that dominate zero-sequence current in phase current. The proposed algorithm can identify the accurately fault type using the sum of unit vectors which are calculated by positive-sequence votage and negative-sequence voltage.

  • PDF

A Faulted Phase Discrimination Algorithm in Ungrounded Distribution System (비접지 배전선로의 고장상 판별 알고리즘 개발)

  • 이덕수;임성일;최면송;이승재
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.2
    • /
    • pp.114-120
    • /
    • 2003
  • According to the use of distribution automation systems, the function to find or to search a fault phase is necessary for automatic switches in a distribution substation. In this paper, two algorithms are developed to fine the fault circuit and the fault phase for the automatic switches in substation with ungrounded power system. One is the fault circuit searching method using the zero sequence voltage at the bus and zero sequence current of circuit current and the other is to find the fault phase using the line voltage and zero sequence current. The developed algorithms are tested in the case study simulations. An ungrounded power system is modeled by EMTP as a case study system. The developed algorithms are tested in the case study simulations and each shows correct results.

Contingency Selection For EMS Operation (EMS 운용을 위한 상정사고 선정)

  • Kim, Jung-Nyun;Baek, Young-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.175-178
    • /
    • 1996
  • Power system is becomming more and more complex and large. So system is stressed increasingly. This paper presents a method to select contingency ranking in power systems for EMS operation. Firstly, the proposed method is applied line outage using Thevenin equivalent circuit. Secondly, Contingency harmful to system is selected by loss variation between base case and fault. Thirdly, this paper prescribed simulated line sequence. Therefore this algorithm shows higher computation speed and effective memory use.

  • PDF

A Fault Section Detection Method for Ungrounded System Based on Phase Angle Comparison of Zero-Sequence Current (비접지 배전계통에서 영상전류 위상 비교에 의한 고장구간 검출 방법)

  • Yang, Xia;Choi, Myeon-Song;Lee, Seung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.31-32
    • /
    • 2007
  • In this paper, a fault section detection method is proposed for ungrounded system in the case of a single line-to-ground fault. A conventional method is used for faulted feeder selection according to the angular relationship between zero-sequence currents of the feeders and zero-sequence voltage of the system. Fault section detection is based on the comparison of phase angle of zero-sequence current. Proposed method has been testified in a demo system by Matlab/Simulink simulations. Based on Distribution Automation System(DAS), Feeder Remote Terminal Unit(FRTU) is used to collect those necessary data, at present a demo system is under developing using Manufacturing Message Specification (MMS) in IEC61850 standard.

  • PDF

Development of On-line Dynamic Security Assessment System (온라인 동적 안전도평가 시스템의 개발)

  • Nam, H.K.;Song, S.G.;Shim, K.S.;Moon, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.73-76
    • /
    • 2001
  • This paper presents a new systematic contingency selection, screening and ranking method for on-line transient security assessment. Transient stability of a particular generator is influenced most by fault near it. Fault at the transmission lines adjacent to the generators are selected as contingency. Two screening methods are developed using the sensitivity of modal synchronizing torque coefficient and computing an approximate critical clearing time(CCT) without time simulation. The first method, which considers only synchronizing power, may mislead in some cases since it does not consider the acceleration power. The approximate CCT method, which consider both the acceleration and deceleration power, worked well. Finally the Single Machine Equivalent(SIME) method is implemented using IPLAN of PSS/E for detailed stability analysis.

  • PDF

Selection of Capacity of Circuit Breaker by Probabilistic Short-Circuit Current Analysis (확률적 고장전류 해석에 의한 차단기 용량 선정)

  • 문영현;오용택
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.1
    • /
    • pp.10-15
    • /
    • 1990
  • This paper presents an algorithm that can compute equivalent impedance effctively in computing 3-phase short circuit current which would be generated in power systems. Also this paper proposes a method that can decide the capacity of circuit breaker by analysing the fault current distribution probabilistically when the fault point of specificed line varies. The efficiency of the algorithm was verified by applying the proposed method to IEEE-6bus system and IEEE-30bus system, and probabilistic fault analysing method is verified economic in facility investment by deciding the proper capacity of circuit breaker.

  • PDF

A Study on the Bus-Tie Application of 154kV HTS-FCL in Korean Power System (실계통에서의 154kV HTS-FCL Bus-Tie 최적 적용방안에 관한 연구)

  • Kim Jong-Yul;Yoon Jae Young;Lee Seung Rvul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.5
    • /
    • pp.226-233
    • /
    • 2005
  • As the power demand has been increasing, a fault current problem is becoming more serious in real power system. Various ways like bus-split operation, transmission line open operation, are used in Korean power system for solving the problem. In this time, superconducting FCL(Fault Current Limiter) has been developed as a vary attractive alternative since HTS(High Temperature Superconductivity) was discovered. Korea, a project developing superconducting FCL to apply to 154kV transmission system is proceeding. Therefore, a power system analysis for SFCL application to power system is necessary, This paper presents the determination of quenching resistance and the selection of optimal cites when 154kV HTS-FCL is applied to Korean power system.