• Title/Summary/Keyword: Fault line discrimination

Search Result 20, Processing Time 0.024 seconds

A Study on the Algorithm for Fault Discrimination in Transmission Lines using Advanced Computational Intelligence(ACI) (ACI 기법을 이용한 송전선로 고장 종류 판별에 관한 연구)

  • Park Jae Hong;Lee Jong Beom
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.619-621
    • /
    • 2004
  • This paper presents the rapid and accurate algorithm for fault discrimination in transmission lines. When faults occur in transmission lines, fault discrimination is very important. If high impedance faults occur in transmission lines, it cannot be detected by overcurrent relays. The method using current and voltage cannot discriminate high impedance fault. Because of this reason this paper uses voltage and zero sequence current, and the proposed algorithm uses fuzzy logic method. This algorithm uses voltage and zero sequence current per period in case of faults. Single line ground fault and three-phase fault can be detective using voltage. Two-line ground fault and line to line fault and high impedance can be detected using zero sequence current. To prove the performance of the algorithm, it test algorithm with signal obtained from ATPDraw simulation.

  • PDF

A Study on the Fault Discrimination and Location Algorithm in Underground Transmission Systems Using Wavelet Transform and Fuzzy Inference (지중송전계통에서 Wavelet 변환과 퍼지추론을 이용한 고장종류판별 및 고장점 추정에 관한 연구)

  • Park, Jae-Hong;Lee, Jong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.3
    • /
    • pp.116-122
    • /
    • 2006
  • The underground transmission lines is continuously expanded in power systems. Therefore the fault of underground transmission lines are increased every year because of the complication of systems. However the studies dealing with fault location in the case of the underground transmission lines are rarely reported except for few papers using traveling wave method and calculating underground cable impedance. This paper describes the algorithm using fuzzy system and travelling wave method in the underground transmission line. Fuzzy inference is used for fault discrimination. To organize fuzzy algorithm, it is important to select target data reflecting various underground transmission line transient states. These data are made of voltage and average of RMS value on zero sequence current within one cycle after fault occurrence. Travelling wave based on wavelet transform is used for fault location. In this paper, a variety of underground transmission line transient states are simulated by EMTP/ATPDraw and Matlab. The input which is used to fault location algorithm are Detail 1(D1) coefficients of differential current. D1 coefficients are obtained by wavelet transform. As a result of applying the fuzzy inference and travelling wave based on wavelet transform, fault discrimination is correctly distinguished within 1/2 cycle after fault occurrence and fault location is comparatively correct.

A Study on the Fault Detection and Discrimination of Transmission Line using Fault-generated High Frequency Signals (고주파를 이용한 송전선로의 사고 검출 및 판별에 관한 연구)

  • Lee, Dong-Jun;Kim, Chul-Hwan;Kim, Il-Dong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.924-931
    • /
    • 1999
  • Most conventional protection relays are based on processing information in the spectrum that is close to or at power frequency. It is, however, widely known that faults on transmission lines produce frequency components of a wide range. High frequency signals caused by sudden changes in system voltage that occurs in the immediate post-fault period are generally outside the bandwidth of receptibility of most protection scheme. In this respect, a specially designed stack tuner is connected to the coupling capacitor of CVT, in order to capture the high frequency signals. Digital signal processing is then applied to the captured information to determine whether the fault is inside or outside the protected zone, and to discriminate the fault type. In this paper, modal transform is not applied to fault generated signals, because signals which are converted by modal transform are not have an information of each phase any longer. Instead, using peak voltage value of data windows is able to discriminate fault type. The paper concludes by presenting fault detection and discrimination of various faults on transmission line which are based on extensive simulation studies carried out on a typical 154kV Korean transmission line, using the EMTP software.

  • PDF

A Study on the Algorithm for Fault Discrimination in Transmission Lines using Neural Network and the Variation of Fault Currents (신경회로망과 고장전류의 변화를 이용한 고장판별 알고리즘에 관한 연구)

  • Yeo, Sang-Min;Kim, Cheol-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.8
    • /
    • pp.405-411
    • /
    • 2000
  • When faults occur in transmission lines, the classification of faults is very important. If the fault is HIF(High Impedance Fault), it cannot be detected or removed by conventional overcurrent relays (OCRs), and results in fire hazards and causes damages in electrical equipment or personal threat. The fast discrimination of fault needs to effective protection and treatment and is important problem for power system protection. This paper propolsed the fault detection and discrimination algorithm for LIFs(Low Impedance Faults) and HIFs(High Impedance Faults). This algorithm uses artificial neural networks and variation of 3-phase maximum currents per period while faults. A double lines-to-ground and line-to-line faults can be detected using Neural Network. Also, the other faults can be detected using the value of variation of maximum current. Test results show that the proposed algorithms discriminate LIFs and HIFs accurately within a half cycle.

  • PDF

Fault Current Discrimination of Power Line using FCM allowing self-organization (FCM에 기반한 자가생성 지도학습알고리즘을 이용한 전력선의 고장전류 판별)

  • Jeong, Jong-Won;Won, Tae-Hyun;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.368-369
    • /
    • 2011
  • This article suggests an online-based remote fault current mode discrimination method in order to identify the causes of the power line faults with various causes. For that, it refers to existing cause identification methods and categorizes modes by fault causes based on statistical techniques beforehand and performs the pretreatment process of fault currents by each cause acquired from the fault recorder into a topological plane in order to extract the characteristics of fault currents by each cause. After that, for the fault mode categorization, it discriminates modes by each cause using data by each cause as leaning data through utilizing RBF network based on FCM allowing self-organization in deciding the middle layer. And then it tests the validity of the suggested method as applying it to the data of the actual fault currents acquired from the fault recorder in the electric power transmission center.

  • PDF

Fault Current Discrimination of Power Line using Phase Space (위상평면을 이용한 전력선의 고장전류 판별)

  • Jeong, Jong-Won;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.86-88
    • /
    • 2009
  • This article suggests an online-based remote fault current mode discrimination method in order to identify the causes of the power line faults with various causes. For that, it refers to existing cause identification methods and categorizes modes by fault causes based on statistical techniques beforehand and performs the pre-treatment process of fault currents by each cause acquired from the fault recorder into a phase space in order to extract the characteristics of fault currents by each cause. After that, for the fault mode categorization, it discriminates modes by each cause using data by each cause as leaning data through utilizing RBF network. And then it tests the validity of the suggested method as applying it to the data of the actual fault currents acquired from the fault recorder in the electric power transmission center.

  • PDF

A Faulted Phase Discrimination Algorithm in Ungrounded Distribution System (비접지 배전선로의 고장상 판별 알고리즘 개발)

  • 이덕수;임성일;최면송;이승재
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.2
    • /
    • pp.114-120
    • /
    • 2003
  • According to the use of distribution automation systems, the function to find or to search a fault phase is necessary for automatic switches in a distribution substation. In this paper, two algorithms are developed to fine the fault circuit and the fault phase for the automatic switches in substation with ungrounded power system. One is the fault circuit searching method using the zero sequence voltage at the bus and zero sequence current of circuit current and the other is to find the fault phase using the line voltage and zero sequence current. The developed algorithms are tested in the case study simulations. An ungrounded power system is modeled by EMTP as a case study system. The developed algorithms are tested in the case study simulations and each shows correct results.

A Study on the Algorithm for Fault Discrimination in Transmission Lines Using Neural Network and the Variation of Fault Currents (신경회로망과 고장전류의 변화를 이용한 고장판별 알고리즘에 관한 연구)

  • Yeo, Sang-Min;Kim, Chul-Hwan;Choi, Myeon-Song;Song, Oh-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.366-368
    • /
    • 2000
  • When faults occur in transmission lines, the classification of faults is very important. If the fault is HIF(High Impedance Fault), it cannot be detected or removed by conventional overcurrent relays (OCRs), and results in fire hazards and causes damages in electrical equipment or personal threat. The fast discrimination of fault needs to effective protection and treatment and is important problem for power system protection. This paper proposes the fault detection and discrimination algorithm for LIFs(Low Impedance Faults) and HIFs(High Impedance Faults). This algorithm uses artificial neural networks and variation of 3-phase maximum currents per period while faults. A double lines-to-ground and line-to-line faults can be detected using Neural Network. Also, the other faults can be detected using the value of variation of maximum current. Test results show that the proposed algorithms discriminate LIFs and HIFs accurately within a half cycle.

  • PDF

Internal Fault Detection and Fault Type Discrimination for AC Generator Using Detail Coefficient Ratio of Daubechies Wavelet Transform (다우비시 웨이브릿 변환의 상세계수 비율을 이용한 교류발전기의 내부고장 검출 및 고장종류 판별)

  • Park, Chul-Won;Shin, Kwang-Chul;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.136-141
    • /
    • 2009
  • An AC generator is an important components in producing a electric power and so it requires highly reliable protection relays to minimize the possibility of demage occurring under fault conditions. Conventionally, a DFT based RDR has been used for protecting the generator stator winding. However, when DFTs based on Fourier analysis are used, it has been pointed out that defects can occur during the process of transforming a time domain signal into a frequency domain one which can lead to loss of time domain information. This paper proposes the internal fault detection and fault type discrimination for the stator winding by applying the detailed coefficients by Daubechies Wavelet Transform to overcome the defects in the DFT process. For the case studies reported in the paper, a model system was established for the simulations utilizing the ATP, and this verified the effectiveness of the proposed technique through various off-line tests carried out on the collected data. The propose method is shown to be able to rapidly identify internal fault and did not operate a miss-operation for all the external fault tested.

A Numerical Algorithm for Fault Location Estimation and Arc Faults Detection for Auto-Reclosure (자동 재폐로기의 동작책무를 위한 아크전압 판정 및 사고거리 표정 알고리즘)

  • Kim, Byeong-Man;Chae, Myeong-Suk;Zheng, Tai-Ying;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1294-1303
    • /
    • 2009
  • This paper presents a new numerical algorithm for fault discrimination and fault location estimation when occur to arcing ground and arcing line to line on transmission lines. The object of this paper is developed from new numerical algorithm to calculate the fault distance and simultaneously to make a distinction between transient and permanent faults. so the first of object for propose algorithm would be distinguish the permanent from the transient faults. This arcing fault discrimination algorithm is used if calculated value of arc voltage amplitude is greater than product of arc voltage gradient and the length of the arc path, which is equal or greater than the flashover length of a suspension insulator string[1-3]. Also, each algorithm is separated from short distance and long distance. This is difference to with/without capacitance between short to long distance. To test the validity of the proposed algorithms, the results of algorithm testing through various computer simulations are given. The test was simulated in EMTP/ATP simulator under a number of scenarios and calculate of algorithm was used to MATLAB.