• Title/Summary/Keyword: Fault line

Search Result 1,139, Processing Time 0.025 seconds

The Design of Lumped Constant Circuit for the Simulation of A Real 22.9 kV-y Distribution Line (22.9 kV-y 실긍장 배전선로 모의를 위한 집중정수회로의 설계)

  • Yun, Chul-Ho;Jeong, Yeong-Ho;Han, Yong-Huei
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1186-1188
    • /
    • 1999
  • When we perform the test related to the power distribution system such as artificial fault test, protective coordination test, distribution automation test in short length test line, Lumped Constant Circuit, a kind of variable impedance, should be attached to the test line in order to make it equivalent to a real line in length electrically. In this paper we designed the positive sequence and zero sequence Lumped Constant Circuit with optimized inductor and resister for the modification of long, 16km, distribution line, when they are attached to the short, 4km, distribution test line.

  • PDF

A Design of Line-fuse Melting Zone Using by Different Union Metal (이종접합 금속재료를 이용한 퓨즈 용단부의 설계)

  • Kim, D.K.;Youn, Y.J.;Park, Y.B.;Lee, S.H.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1525-1527
    • /
    • 1998
  • The line-fuse which one of device most widely used in distributed line system has a ability to cut off the fault current flow into the house. But this device can be used only one time. So there are many waste of human power and money to exchange acted line-fuse. In this paper, we designed new type of line-fuse melting zone using by different union metal, so line-fuse can be reused after once operated.

  • PDF

Gravity Field Interpretation and Underground Structure Modelling as a Method of Setting Horizontal and Vertical Zoning of a Active Fault Core (활성단층의 3차원적인 규모를 결정하기 위한 중력장 데이터의 해석 및 지각구조 모델링: 양산단층에서의 예)

  • Choi, Sungchan;Kim, Sung-Wook;Choi, Eun-Kyeong;Lee, Young-Cheol;Ha, Sangmin
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.91-103
    • /
    • 2021
  • In order to estimate the vertical and horizontal structural in the Yangsan fault core line (Naengsuri area, Pohang), we carried out gravity field measurements and interpretation procedures such as Euler deconvolution method and curvature analysis in addition to the forward modelling technique (i.e. IGMAS+). We found a prominent gravity difference of more than 1.5 mGal across the fault core. This indicates a distinct density difference between the western and eastern crustal area across the Yangsan fault line. Comparing this gravity field interpretation with other existent geologic and geophysical survey data (e.g. LiDAR, trenching, electric resistivity measurements), It is concluded that (1) the prominent gravity difference is caused by the density difference of about 0.1 g/㎤ between the Bulguksa Granite in the west and the Cretaceous Sandstone in the east side, (2) the fault core is elongated vertically into a depth of about 2,000 meters and extended horizontally 3,000 meters to the NNE direction from Naengsuri area. Our results present that the gravity field method is a very effective tool to estimate a three -dimensional image of the active fault core.

Analyzing Stability of Jeju Island Power System with Modular Multilevel Converter Based HVDC System

  • Quach, Ngoc-Thinh;Lee, Do Heon;Kim, Ho-Chan;Kim, Eel-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.47-55
    • /
    • 2015
  • This paper proposes the installation of a new modular multilevel converter based high-voltage direct current (MMC-HVDC) system to connect between mainland and Jeju island power systems in Korea in 2020. The purpose is to combine with two old line-commutated converters (LCC)-based HVDC system to achieve a stability of the Jeju island power system. The operation of the overall system will be analyzed in three cases: (i) wind speed is variable, (ii) either one of the LCC-HVDC systems is shutdown because of a fault or overhaul, (iii) a short circuit fault occurs at the mainland side. The effectiveness of the proposed control method is confirmed by the simulation results based on a PSCAD/EMTDC simulation program.

Real-time Fault Detection in Semiconductor Manufacturing Process : Research with Jade Solution Company

  • Kim, Byung Joo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.20-26
    • /
    • 2017
  • Process control is crucial in many industries, especially in semiconductor manufacturing. In such large-volume multistage manufacturing systems, a product has to go through a very large number of processing steps with reentrant) before being completed. This manufacturing system has many machines of different types for processing a high mix of products. Each process step has specific quality standards and most of them have nonlinear dynamics due to physical and/or chemical reactions. Moreover, many of the processing steps suffer from drift or disturbance. To assure high stability and yield, on-line quality monitoring of the wafers is required. In this paper we develop a real-time fault detection system on semiconductor manufacturing process. Proposed system is superior to other incremental fault detection system and shows similar performance compared to batch way.

A Protection Algorithm Discriminating Between Internal and External Faults for Wind Farms (풍력발전단지 보호를 위한 내외부 고장 판별 알고리즘)

  • Kwon, Young-Jin;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.854-859
    • /
    • 2007
  • A wind farm consists of many wind generator(WG)s therefore, it is generally a complex power system. A wind farm as a distributed generation(DG) affects utility power system. If a conventional protection schemes are applied, it is difficult to detect faults correctly and the schemes can't provide proper coordination in some cases. This paper presents a protection algorithm for a wind farm which consists of a looped collection circuit. Because the proposed algorithm can distinguish between an internal fault and an external fault in a wind farm, The proposed algorithm can disconnect the faulted section in a wind farm. This algorithm is based on an overcurrent protection technique with the change of the ratio of the output current of a generator to the current of the looped line connected to each generator to collect the each generator's power. In addition, operating time of the algorithm is shortened by using the voltage drop at a generator collection point. The performance of the proposed algorithm was verified under various fault conditions using PSCAD/EMTDC simulations.

An Improvement of Distance Relay Technique Reliability using Elman Network (Elman Network를 이용한 거리계전기법의 신뢰성 향상)

  • Jung, H.S.;Lee, J.J.;Shin, M.C.;Lee, B.K.;Park, C.W.;Jang, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.212-214
    • /
    • 2000
  • The distance relay technique used for transmission line protection operates overreach and underreach to the self protection region because the power system becomes complex and fault conditions are different. To solve these problems, this paper describes new technique to set the reliable self protection lesion. The trip region of the quadrilateral distance relay is set by training of multi layer recurrent elman network. The proposed network is able to reach the trip zone for the fault impedance, fault initial angle and source impedance variance correctly.

  • PDF

Two-Terminal Fault Location Estimation Algorithm Considering Arcing Ground Fault (아크 지락 사고를 고려한 양단자 사고거리 추정 알고리즘)

  • Kim, Hyun-Houng;Lee, Chan-Joo;Cho, Ki-Sun;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.166-168
    • /
    • 2005
  • This paper presents a new numerical algorithm devoted to one window onto fault location calculation in time domain. It is based on two terminal data processing and it is derived on the synchronized phasor measured from the GPS connected the trans-mission line. The data is obtained by the testing through EMTP (Electromagnetic Tran- sient Program). The proposed the algorithm is estimated using linear least error squares method. The results of the algorithm testing through computer simulation (MATLAB) are presented.

  • PDF

An Improved Technique For The Fault Location Estimation Using Synchronized Phasors (동기 페이져 정보를 이용한 개선된 사고거리추정 기법)

  • Lee, Chan-Joo;Kim, Hyun-Houng;Park, Jong-Bae;Shin, Joong-Rin;Radojevic, Zoran
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.310-312
    • /
    • 2005
  • This paper presents an improved two-terminal technique for fault location estimation. The proposed algorithm is also based on the synchronized phasors measured from the synchronized PMUs installed at two-terminals of the transmission lines. Also the arc voltage wave shape is modeled numerically on the basis of a great number of arc voltage records. Also, the two-terminal fault algorithm for the long line model is derived in the spectral domain.

  • PDF

Simulation of the Three-Phase Modified Bridge Tyne Fault Current Limiter for Simplified Power System (삼상 변형 브리지 형태 한류기의 단순계통적용 시뮬레이션)

  • 이응로;이승제;이찬주;김태중;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.68-71
    • /
    • 2001
  • This paper deals with the operational characteristics of the three-phase modified bridge type fault current limiter(FCL) for 3.3kV/200A power system. This is a preliminary step to develop the FCL's faculties for an application to high voltage transmission line. A three-phase modified bridge type FCL consists of transformers, diodes, and a high-Tc superconducting coil. As the results of simulations, when the FCL of 1.5H inductance was installed in the power system. the fault current was reduced to be about 90% of that without FCL.

  • PDF