• Title/Summary/Keyword: Fault diagnostic

Search Result 273, Processing Time 0.026 seconds

Diagnostic system development for state monitoring of induction motor and oil level in press process system (프레스공정시스템에서 유도전동기 및 윤활유 레벨 상태모니터링을 위한 진단시스템 개발)

  • Lee, In-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.706-712
    • /
    • 2009
  • In this paper, a fault diagnosis method is proposed to detect and classifies faults that occur in press process line. An oil level automatic monitoring method is also presented to detect oil level. The FFT(fast fourier transform) frequency analysis and ART2 NN(adaptive resonance theory 2 neural network) with uneven vigilance parameters are used to achieve fault diagnosis in proposing method, and GUI(graphical user interface) program for fault diagnosis and oil level automatic monitoring using LabVIEW is produced and fault diagnosis was done. The experiment results demonstrate the effectiveness of the proposed fault diagnosis method of induction motors and oil level automatic monitor system.

Support vector ensemble for incipient fault diagnosis in nuclear plant components

  • Ayodeji, Abiodun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1306-1313
    • /
    • 2018
  • The randomness and incipient nature of certain faults in reactor systems warrant a robust and dynamic detection mechanism. Existing models and methods for fault diagnosis using different mathematical/statistical inferences lack incipient and novel faults detection capability. To this end, we propose a fault diagnosis method that utilizes the flexibility of data-driven Support Vector Machine (SVM) for component-level fault diagnosis. The technique integrates separately-built, separately-trained, specialized SVM modules capable of component-level fault diagnosis into a coherent intelligent system, with each SVM module monitoring sub-units of the reactor coolant system. To evaluate the model, marginal faults selected from the failure mode and effect analysis (FMEA) are simulated in the steam generator and pressure boundary of the Chinese CNP300 PWR (Qinshan I NPP) reactor coolant system, using a best-estimate thermal-hydraulic code, RELAP5/SCDAP Mod4.0. Multiclass SVM model is trained with component level parameters that represent the steady state and selected faults in the components. For optimization purposes, we considered and compared the performances of different multiclass models in MATLAB, using different coding matrices, as well as different kernel functions on the representative data derived from the simulation of Qinshan I NPP. An optimum predictive model - the Error Correcting Output Code (ECOC) with TenaryComplete coding matrix - was obtained from experiments, and utilized to diagnose the incipient faults. Some of the important diagnostic results and heuristic model evaluation methods are presented in this paper.

Fault Diagnosis for the Nuclear PWR Steam Generator Using Neural Network (신경회로망을 이용한 원전 PWR 증기발생기의 고장진단)

  • Lee, In-Soo;Yoo, Chul-Jong;Kim, Kyung-Youn
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.673-681
    • /
    • 2005
  • As it is the most important to make sure security and reliability for nuclear Power Plant, it's considered the most crucial issues to develop a fault detective and diagnostic system in spite of multiple hardware redundancy in itself. To develop an algorithm for a fault diagnosis in the nuclear PWR steam generator, this paper proposes a method based on ART2(adaptive resonance theory 2) neural network that senses and classifies troubles occurred in the system. The fault diagnosis system consists of fault detective part to sense occurred troubles, parameter estimation part to identify changed system parameters and fault classification part to understand types of troubles occurred. The fault classification part Is composed of a fault classifier that uses ART2 neural network. The Performance of the proposed fault diagnosis a18orithm was corroborated by applying in the steam generator.

A Study on the Reliability of Failure Diagnosis Methods of Oil Filled Transformer using Actual Dissolved Gas Concentration (유중가스농도를 이용한 유입식 변압기 고장진단 기법의 신뢰성에 관한 연구)

  • Park, Jin-Yeub;Chin, Soo-Hwan;Park, In-Kyoo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.114-119
    • /
    • 2011
  • Large Power transformer is a complex and critical component of power plant and consists of cellulosic paper, insulation oil, core, coil etc. Insulation materials of transformer and related equipment break down to liberate dissolved gas due to corona, partial discharge, pyrolysis or thermal decomposition. The dissolved gas kinds can be related to the type of electrical faults, and the rate of gas generation can indicate the severity of the fault. The identities of gases being generated are using very useful to decide the condition of transformation status. Therefore dissolved gas analysis is one of the best condition monitoring methods for power transformer. Also, on-line multi-gas analyzer has been developed and installed to monitor the condition of critical transformers. Rogers method, IEC method, key gas method and Duval Triangle method are used to failure diagnosis typically, and those methods are using the ratio or kinds of dissolved gas to evaluate the condition of transformer. This paper analyzes the reliability of transformer diagnostic methods considering actual dissolved gas concentration. Fault diagnosis is performed based on the dissolved gas of five transformers which experienced various fault respectively in the field, and the diagnosis result is compared with the actual off-line fault analysis. In this comparison result, Diagnostic methods using dissolved gas ratio like Rogers method, IEC method are sometimes fall outside the ratio code and no diagnosis but Duval triangle method and Key gas method is correct comparatively.

A Study of Rotor Fault Detection for the Induction Motor Using Axial Leakage Magnetic Flux (축방향 누설자속 측정에 의한 유도전동기의 회전자 결함검출에 관한 연구)

  • Shin, Dae-Cheul;Kim, Young-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.132-137
    • /
    • 2006
  • The second part of paper related rotor failure is to evaluate that the axial magnetic flux measurement could be used as a tool of the condition monitoring system for the induction motor and to develope the diagnostic algorithm for the various fault in the electric motors. The magnetic leakage flux signal is captured by the flux coil located at the end of motor without the disturbance of the operation. And the signal is analyzed both time and frequency domain to detect the failure of the motor. Specific signature can be described in tin and frequency domain for each fault of the motor. The experimental test found that the rotor failures - broken rotor bar, broken end ing and rotor eccentricity, could be detected from the spectrum with high resolution. The method of detecting the rotor fault was found by analysing the specific frequency and the sideband of the rotor bar pass frequency from axial leakage flux spectrum. In addition the optimal flux coil and measuring equipment for the axial leakage flux measurement was verified and the diagnostic method for the detection of the rotor related failure was developed.

A Study on Fault Model end Performance Evaluation under Power Switch Open Fault in an Inverter-Driven Permanent Magnets Synchronous Motor (영구자석 동기전동기 구동 인버터 스위치의 개방 고장에 의한 제어 특성해석 및 고장모델 연구)

  • Kim, Kyeong-Hwa;Choi, Dong-Uk;Gu, Bon-Gwan;Jung, In-Soung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.40-51
    • /
    • 2009
  • To analyze influences under open faults in switching devices of the PWM inverter and under the isolation between the inverter and motor terminal, a faulty model for the inverter-driven permanent magnet synchronous motor is presented. Even though the conventional dq motor model obtained through the transformation of phase voltage model is widely used to analyze and control AC motor, it can not be used under open faults in switching devices since the 3-phase balanced condition is no longer hold under the open fault and it is not easy to obtain motor input voltages in open phase from the pole voltage. To deal with this problem, a faulty model for an inverter-driven permanent magnet synchronous motor is derived by using the line voltage of motor according to switch open, which can be effectively used for performance evaluation of the diagnostic algorithm. The validity of the proposed faulty model is verified through comparative simulations and experiments using DSP TMS320F28335.

A multi-layer approach to DN 50 electric valve fault diagnosis using shallow-deep intelligent models

  • Liu, Yong-kuo;Zhou, Wen;Ayodeji, Abiodun;Zhou, Xin-qiu;Peng, Min-jun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.148-163
    • /
    • 2021
  • Timely fault identification is important for safe and reliable operation of the electric valve system. Many research works have utilized different data-driven approach for fault diagnosis in complex systems. However, they do not consider specific characteristics of critical control components such as electric valves. This work presents an integrated shallow-deep fault diagnostic model, developed based on signals extracted from DN50 electric valve. First, the local optimal issue of particle swarm optimization algorithm is solved by optimizing the weight search capability, the particle speed, and position update strategy. Then, to develop a shallow diagnostic model, the modified particle swarm algorithm is combined with support vector machine to form a hybrid improved particle swarm-support vector machine (IPs-SVM). To decouple the influence of the background noise, the wavelet packet transform method is used to reconstruct the vibration signal. Thereafter, the IPs-SVM is used to classify phase imbalance and damaged valve faults, and the performance was evaluated against other models developed using the conventional SVM and particle swarm optimized SVM. Secondly, three different deep belief network (DBN) models are developed, using different acoustic signal structures: raw signal, wavelet transformed signal and time-series (sequential) signal. The models are developed to estimate internal leakage sizes in the electric valve. The predictive performance of the DBN and the evaluation results of the proposed IPs-SVM are also presented in this paper.

Development of Fault Diagnostic Algorithm based on Spectrum Analysis of Acceleration Signal for Wind Turbine System (가속도 신호의 주파수 분석에 기반한 풍력발전 고장진단 알고리즘 개발)

  • Ahn, Sung-Ill;Choi, Seong-Jin;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.675-680
    • /
    • 2012
  • Wind energy is currently the fastest growing source of renewable energy used for electrical generation around the world. Wind farms are adding a significant amount of electrical generation capacity. The increase in the number of wind farms has led to the need for more effective operation and maintenance. CMS(Condition Monitoring System) can be used to aid plant operator in achieving these goals. Its aim is to provide operators with information regarding th e health of their machine, which in turn, can help them improve operation efficiency. In this work, wind turbine fault diagnostic algorithm which can diagnose the mass unbalance and aerodynamic asymmetry of the blades is proposed. Proposed diagnostic algorithm utilizes both FFT(Fast Feurier Transform) of the signal from accelerometers installed inside of nacelle and simple diagnostic logic. Furthermore, to verify the applicability of the proposed system, 3W small sized wind turbine system is tested and physical experiments are carried out.

A Stator Fault Diagnosis of an Induction Motor based on the Phase Angle of Park's Vector Approach (Park's Vector Approach의 위상각 변이를 활용한 유도전동기 고정자 고장진단)

  • Go, Young-Jin;Lee, Buhm;Song, Myung-Hyun;Kim, Kyoung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.408-413
    • /
    • 2014
  • In this paper, we propose a fault diagnosis method based on Park's Vector Approach using the Euler's theorem. If we interpreted it as Euler's theorem, it is possible to easily find the phase angle difference between the healthy condition and the fault condition. And, we analyzed the variation of the phase angle and performed the diagnostic method of the induction motor using feature vectors that were obtained by using a Fourier transform. The analysis of time and speed variation of the motor was performed and, as a result, we could find more soft variations than rough variations. In particular, the analysis of the distortion through each phase shows that two-turn and four-turn shorted motors are linearly separable. In this experiment, we know that the maximum breakdown threshold value for determining steady-state fault detection is 49.0788. Simulation and experimental results show the more detectable than conventional method.

Method for High-visibility of Online Monitoring and Fault Diagnosis System for Industrial Motor using PVA (PVA를 이용한 산업용 모터 고장진단 모니터링 시스템의 가시성을 높이는 방법)

  • Goh, Yeong-Jin;Kang, In-Won
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • Industrial Motors diagnostic equipment is highly dependent on the automation system, so if there are defects in the automation equipment, it can only rely on the operator's intuitive judgment.To help with intuitive judgment, Park's Vactor Approach(PVA) represents the current signal as a pattern of circles, so it can tell if a fault occurs when the circle is distorted. However, the failure to judge the degree of distortion of the circle pattern is the basis of the fault, so it will face difficulties. In this paper, in order to compare the faults of PVA, the period of d-axis current of PVA pulsation was mastered, so that two phase differences occurred in the same signal source. Through experiments, it is confirmed that this is a 90 degree cross formation of PVA, which is convenient for judging from the vision that there is no fault, thus helping the operator to make intuitive judgment.