• Title/Summary/Keyword: Fault diagnosis model

Search Result 315, Processing Time 0.025 seconds

A water treatment case study for quantifying model performance with multilevel flow modeling

  • Nielsen, Emil K.;Bram, Mads V.;Frutiger, Jerome;Sin, Gurkan;Lind, Morten
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.532-541
    • /
    • 2018
  • Decision support systems are a key focus of research on developing control rooms to aid operators in making reliable decisions and reducing incidents caused by human errors. For this purpose, models of complex systems can be developed to diagnose causes or consequences for specific alarms. Models applied in safety systems of complex and safety-critical systems require rigorous and reliable model building and testing. Multilevel flow modeling is a qualitative and discrete method for diagnosing faults and has previously only been validated by subjective and qualitative means. To ensure reliability during operation, this work aims to synthesize a procedure to measure model performance according to diagnostic requirements. A simple procedure is proposed for validating and evaluating the concept of multilevel flow modeling. For this purpose, expert statements, dynamic process simulations, and pilot plant experiments are used for validation of simple multilevel flow modeling models of a hydrocyclone unit for oil removal from produced water.

Development of Equipment Operating Condition Diagnosis Model Using the Fuzzy Inference (퍼지추론을 이용한 설비가동상태진단 모델 연구)

  • Jeong, Young-Deuk;Park, Ju-Sik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.4
    • /
    • pp.109-115
    • /
    • 2005
  • In the study, Methods for operating measures in equipment security to find out dangerousness timely in the system and to need for the prevention and measures. The method for analyzing and reconstructing the causes of accident of equipment in site, and try to save the information of site in real-time and to analyze the state of equipment to look for the factors of accidents. By this analysis, one plan for efficiency of production, Equipment Fault Diagnosis Management and security is integrating and building module of using the Fuzzy Inference based on fuzzy theory. The case study is applied to the industrial electric motors that are necessarily used to all manufacturing equipment. Using the sensor for temperature is attached to gain the site information in real time and to design the hardware module for signal processing. In software, realize the system supervising and automatically saving to management data base by the algorithm based in fuzzy theory from the existing manual input system

Operational Availability Improvement through Online Monitoring and Advice For Emergency Diesel Generator

  • Lee, Jong-Beom;Kim, han-Gon;Kim, Byong-Sub;M. Golay;C.W. Kang;Y. Sui
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.264-270
    • /
    • 1998
  • This research broadens the prime concern of nuclear power plant operations from safe performance to both economic and safe performance. First emergency diesel generator is identified as one of main contributors for the lost plant availability through the review of plants forced outage records. The framework of an integrated architecture for performing modern on-line condition for operational availability improvement is configured in this work. For the development of the comprehensive sensor networks for complex target systems, an integrated methodology incorporating a structural hierarchy, a functional hierarchy, and a fault-system matrix is formulated. The second part of our research is development of intelligent diagnosis and maintenance advisory system, which employs Bayesian Belief networks (BBNs) as a high level reasoning tool incorporating inherent uncertainty use in probabilistic inference. Our prototype diagnosis algorithms are represented explicitly through topological symbols and links between them in a causal direction. As new evidence from sensor network development is entered into the model especially, our advisory of system provides operational advice concerning both availability and safety, so that the operator is able to determine the likely modes, diagnose the system state, locate root causes, and take the most advantageous action. Thereby, this advice improves operational availability

  • PDF

The Development of Infrared Thermal Imaging Safety Diagnosis System Using Pearson's Correlation Coefficient (피어슨 상관계수를 이용한 적외선 열화상 안전 진단 시스템 개발)

  • Jung, Jong-Moon;Park, Sung-Hun;Lee, Yong-Sik;Gim, Jae-Hyeon
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.55-65
    • /
    • 2019
  • With the rapid development of the national industry, the importance of electrical safety was recognized because of a lot of new electrical equipment are installing and the electrical accidents have been occurring annually. Today, the electrical equipments is inspect by using the portable Infrared thermal imaging camera. but the most negative element of using the camera is inspected for only state of heating, the reliable diagnosis is depended with inspector's knowledge, and real-time monitoring is impossible. This paper present the infrared thermal imaging safety diagnosis system. This system is able to monitor in real time, predict the state of fault, and diagnose the state with analysis of thermal and power data. The system consists of a main processor, an infrared camera module, the power data acquisition board, and a server. The diagnostic algorithm is based on a mathematical model designed by analyzing the Pearson's Correlation Coefficient between temperature and power data. To test the prediction algorithm, the simulations were performed by damaging the terminals or cables on the switchboard to generate a large amount of heat. Utilizing these simulations, the developed prediction algorithm was verified.

Design on Fult Diagnosis System based on Dynamic Fuzzy Model (동적포지모델기반 고장진단 시스템의 설계)

  • 배상욱
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.94-102
    • /
    • 2000
  • This paper presents a new FDI scheme based on dynamic fuzzy model(DFM) for the unknown nonlinear system, which can detect and isolate process faults continuously over all ranges of operating condition. The dynamic behavior of a nonlinear process is represented by a set of local linear models. The parameters of the DFM are identified by an on-line methods. The residual vector of the FDI system is consisted of the parameter deviations from nominal model and the set of grade of membership values indicating the operating condition of the nonlinear process. The detection and isolation of faults are performed via a neural network classifier that are learned the relationship between the residual vector and fault type. We apply the proposed FDI scheme to the FDI system design for a two-tank system and show the usefulness of the proposed scheme.

  • PDF

Modeling, Simulation and Fault Diagnosis of IPFC using PEMFC for High Power Applications

  • Darly, S.S.;Vanaja Ranjan, P.;Justus Rabi, B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.760-765
    • /
    • 2013
  • An Interline Power Flow Controller (IPFC) is a converter based controller which compensates and balance the power flow among multi-lines within the same corridor of the multi-line subsystem. The Interline Power Flow Controller consists of a voltage source converter based Flexible AC Transmission System (FACTS) controller for series compensation. The reactive voltage injected by individual Voltage Source Converter (VSC) can be controlled to regulate active power flow in the respective line in which one VSC regulates the DC voltage, the other one controls the reactive power flows in the lines by injecting series active voltage. In this paper, a circuit model for IPFC is developed and simulation of interline power flow controller is done using the proposed circuit model. Simulation is done using MATLAB Simulink and PSPICE. The results obtained by MATLAB are compared with the results obtained by PSPICE and compared with theoretical values.

Model Based Switch Open Fault Detection and Diagnosis for SPMSM (전압 오차를 이용한 인버터의 스위치 개방 고장 감지 및 진단)

  • Lim, Gyu Cheol;Choi, Young Hyun;Ha, Jung-Ik
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.103-104
    • /
    • 2017
  • 영구자석 전동기는 전력 밀도가 높고 효율이 좋은 특징으로 견인, 의료, 군사 분야 등 다양한 산업 분야에서 사용되고 있다. 이러한 분야에서 사용되는 전동기 구동 시스템은 높은 신뢰성이 요구되므로 인버터에서 발생하는 전력 반도체 스위치 고장을 빠르게 감지해야한다. 본 논문에서는 제어기 상전압 지령과 추정된 상전압 사이의 오차를 통해 전력 반도체 개방 고장을 감지하고 진단하는 방법을 제시하였다. 제안된 방법은 추가적인 측정 회로 없이 제어기 내부 값을 사용하여 개방 고장을 감지하고 개방된 스위치를 진단할 수 있다. 특히 부하 변동을 고려한 감지 방법을 제안하여 고장 감지의 신뢰성을 개선한다.

  • PDF

A Study on Realization of Function Code for Fuzzy Control in the Continuous Casting Process of the Iron & Steel Works (제철소 연속주조 공정에서의 퍼지제어를 위한 기능코드의 구현 연구)

  • ;;;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1545-1551
    • /
    • 1995
  • As the modern industrial processes become more complex, it is getting more difficult to model and control the processes. Naturally, an advanced type of DCS(Distributed Control System) with higher level functions is being sought. Advanced DCS is a DCS with advanced functions such as fault diagnosis, GPC(Generalized Predictive Control), NN(Neural Network), and Fuzzy Control. In this thesis, we have studied a fuzzy control algorithm for realizing an advanced DCS. Its algorithm is implemented in a form of function code which is a process control language, being used by the industrial engineers. To verify the realized function code of the fuzzy control, the function code is applied to a continuous casting process of the Pohang Iron & Steel Works in Kwangyang. The rules of the fuzzy control were collected via interviews of the field operators and their operation documents. Finally under a real-time operating system environment, usability of the function code of the fuzzy control is shown via simulation for the continuous casting process.

  • PDF

Demagnetization Detection for IPM-type BLDCMs According to Irreversible Demagnetization Patterns and Pole-Slot Coefficients

  • Kang, Dong-Hyeok;Kim, Hyung-Kyu;Park, Jun-Kyu;Hyun, Seung-Ho;Hur, Jin
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.48-56
    • /
    • 2016
  • This paper proposes a method for detecting irreversible demagnetization using the harmonic analysis of back electromotive force (BEMF) in interior permanent magnet-type brushless DC motors. First, demagnetization patterns, such as equality, inequality, and weighted demagnetizations, are defined and classified by considering the possibility of demagnetization resulting from motor operating characteristics. Second, an available diagnostic model for the harmonic analysis of BEMFs is defined according to pole-slot coefficients because the characteristics of BEMFs under demagnetization conditions are affected by the combination of poles and slots. Third, BEMFs and their harmonic components under normal and demagnetization conditions are analyzed through simulation and experiment to verify the proposed demagnetization detection technique.

Research Trends Analysis of Machine Learning and Deep Learning: Focused on the Topic Modeling (머신러닝 및 딥러닝 연구동향 분석: 토픽모델링을 중심으로)

  • Kim, Chang-Sik;Kim, Namgyu;Kwahk, Kee-Young
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.2
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to examine the trends on machine learning and deep learning research in the published journals from the Web of Science Database. To achieve the study purpose, we used the abstracts of 20,664 articles published between 1990 and 2017, which include the word 'machine learning', 'deep learning', and 'artificial neural network' in their titles. Twenty major research topics were identified from topic modeling analysis and they were inclusive of classification accuracy, machine learning, optimization problem, time series model, temperature flow, engine variable, neuron layer, spectrum sample, image feature, strength property, extreme machine learning, control system, energy power, cancer patient, descriptor compound, fault diagnosis, soil map, concentration removal, protein gene, and job problem. The analysis of the time-series linear regression showed that all identified topics in machine learning research were 'hot' ones.