• 제목/요약/키워드: Fault detection and identification

검색결과 98건 처리시간 0.036초

지식기반 퍼지 추론을 이용한 디젤기관 연소계통의 고장진단 시스템에 관한 연구 (A Study on the Fault Diagnosis System for Combustion System of Diesel Engines Using Knowledge Based Fuzzy Inference)

  • 유영호;천행춘
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.42-48
    • /
    • 2003
  • In general many engineers can diagnose the fault condition using the abnormal ones among data monitored from a diesel engine, but they don't need the system modelling or identification for the work. They check the abnormal data and the relationship and then catch the fault condition of the engine. This paper proposes the construction of a fault diagnosis engine through malfunction data gained from the data fault detection system of neural networks for diesel generator engine, and the rule inference method to induce the rule for fuzzy inference from the malfunction data of diesel engine like a site engineer with a fuzzy system. The proposed fault diagnosis system is constructed in the sense of the Malfunction Diagnosis Engine(MDE) and Hierarchy of Malfunction Hypotheses(HMH). The system is concerned with the rule reduction method of knowledge base for related data among the various interactive data.

음향 방출 신호와 히스토그램 모델링을 이용한 유도전동기의 베어링 결함 검출 (Bearing Faults Identification of an Induction Motor using Acoustic Emission Signals and Histogram Modeling)

  • 장원철;서준상;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권11호
    • /
    • pp.17-24
    • /
    • 2014
  • 본 논문에서는 저속으로 회전하는 유도 전동기의 베어링 결함을 검출하기 위해 음향 방출 신호와 히스토그램 모델링을 이용하는 방법을 제안한다. 제안한 방법은 정규화된 결함 신호가 구성하는 히스토그램의 포락선을 모델링하여, 부분 상관 계수와 DET(Distance Evaluation Technique) 기법을 이용하여 결함 유형별 고유한 특징을 추출 및 선택한다. 추출된 특징을 SVR(Support Vector Regression) 분류기의 입력으로 사용하여 베어링의 내륜, 외륜 및 롤러 결함을 분류한다. 최적의 분류 성능을 위해 SVR 커널함수의 매개변수를 0.01에서 1.0까지 변화시키고, 특징 개수는 2에서 150까지 변화시키면서 실험한 결과, 0.64-0.65의 매개변수와 75개의 특징 개수에서 제안한 방법은 약 91%의 분류 성능을 보였고, 또한 기존의 결함 분류 알고리즘보다 높은 분류 성능을 보였다.

GPS RAIM에서의 2개 파라미터 고장진단에 대한 연구 (Study on Two-Failure GPS RAIM Problem)

  • 유창선;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.194-194
    • /
    • 2000
  • In aviation navigation by GPS, requirements on availability and integrity must be absolutely satisfied for safety. Current study on accomplishing this integrity includes RAM(Receiver Autonomous Integrity Monitoring), checking integrity internally in GPS receiver itself. However RAIM techniques have be investigated and presented under assumption that there is included only one fault in measurements from GPS, In case of multiple fault, an interaction among bias errors sometimes results in decreasing the effect of multiple fault. This may make an exact fault detection and identification difficult, and study on mutiple fault RAIM focused on. This paper explains the reasons that techniques applied on single fault are not adequate to extend directly to two faults case and shows that RAIM solution on two fault may be given in revised parity space.

  • PDF

실시간 조종미계수 추정에 의한 무인비행기 조종면 고장검출 (Real-Time Estimation of Control Derivatives for Control Surface Fault Detection of UAV)

  • 이환;김응태;최형식;최지영;이상기
    • 한국항공우주학회지
    • /
    • 제35권11호
    • /
    • pp.999-1005
    • /
    • 2007
  • 공력미계수에 대한 실시간 추정은 비정상적인 조종면 작동의 경우, 고장에 대한 정보를 분석하여 비행임무를 계속 수행하거나 본부로 회항비행을 지속할 수 있도록 하는 재형상 제어를 위해 필요하다. 본 논문에서는 고장허용제어시스템에 대한 기반 연구로서 무인비행기 안전성 향상을 위하여 조종면 작동불능과 같은 고장에 대해 검출 방법을 제시하였다. 조종면 고장검출을 위한 실시간 시스템식별 알고리듬은 퓨리에 변환기법을 사용하였으며 프로그램 성능 및 검증을 위해 HILS 시험을 수행하였다. 고장 조종면은 피칭모멘트, 요잉모멘트, 롤링모멘트에 대한 조종면 효과를 나타내는 조종미계수들을 실시간 추정하여 정상상태의 값과 비교하여 검출된다. 비행시험 결과를 통해 고장상태의 조종미계수 값은 정상상태의 값보다 작다는 것을 정량적으로 확인하였다.

A Fault Severity Index for Stator Winding Faults Detection in Vector Controlled PM Synchronous Motor

  • Hadef, M.;Djerdir, A.;Ikhlef, N.;Mekideche, M.R.;N'diaye, A. O.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2326-2333
    • /
    • 2015
  • Stator turn faults in permanent magnet synchronous motors (PMSMs) are more dangerous than those in induction motors (IMs) because of the presence of spinning rotor magnets that can be turned off at will. Condition monitoring and fault detection and diagnosis of the PMSM have been receiving a growing amount of attention among scientists and engineers in the past few years. The aim of this study is to propose a new detection technique of stator winding faults in a three-phase PMSM. This technique is based on the image analysis and recognition of the stator current Concordia patterns, and will allow the identification of turn faults in the stator winding as well as its correspondent fault index severity. A test bench of a vector controlled PMSM motor behaviors under short circuited turn in two phases stator windings has been built. Some experimental results of the phase to phase short circuits have been performed for diagnosis purpose.

Integrating Fuzzy based Fault diagnosis with Constrained Model Predictive Control for Industrial Applications

  • Mani, Geetha;Sivaraman, Natarajan
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.886-889
    • /
    • 2017
  • An active Fault Tolerant Model Predictive Control (FTMPC) using Fuzzy scheduler is developed. Fault tolerant Control (FTC) system stages are broadly classified into two namely Fault Detection and Isolation (FDI) and fault accommodation. Basically, the faults are identified by means of state estimation techniques. Then using the decision based approach it is isolated. This is usually performed using soft computing techniques. Fuzzy Decision Making (FDM) system classifies the faults. After identification and classification of the faults, the model is selected by using the information obtained from FDI. Then this model is fed into FTC in the form of MPC scheme by Takagi-Sugeno Fuzzy scheduler. The Fault tolerance is performed by switching the appropriate model for each identified faults. Thus by incorporating the fuzzy scheduled based FTC it becomes more efficient. The system will be thereafter able to detect the faults, isolate it and also able to accommodate the faults in the sensors and actuators of the Continuous Stirred Tank Reactor (CSTR) process while the conventional MPC does not have the ability to perform it.

Condition Monitoring of Check Valve Using Neural Network

  • Lee, Seung-Youn;Jeon, Jeong-Seob;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2198-2202
    • /
    • 2005
  • In this paper we have presented a condition monitoring method of check valve using neural network. The acoustic emission sensor was used to acquire the condition signals of check valve in direct vessel injection (DVI) test loop. The acquired sensor signal pass through a signal conditioning which are consisted of steps; rejection of background noise, amplification, analogue to digital conversion, extract of feature points. The extracted feature points which represent the condition of check valve was utilized input values of fault diagnosis algorithms using pre-learned neural network. The fault diagnosis algorithm proceeds fault detection, fault isolation and fault identification within limited ranges. The developed algorithm enables timely diagnosis of failure of check valve’s degradation and service aging so that maintenance and replacement could be preformed prior to loss of the safety function. The overall process has been experimented and the results are given to show its effectiveness.

  • PDF

영구자석 동기전동기 드라이브의 확장형 칼만필터를 이용한 개방성 고장진단 기법 (Fault Diagnosis Scheme for Open-Phase Fault of Permanent Magnet Synchronous Motor Drive using Extended Kalman Filter)

  • 안성국;박병건;김래영;현동석
    • 전력전자학회논문지
    • /
    • 제16권2호
    • /
    • pp.191-198
    • /
    • 2011
  • 본 논문에서는 영구자석 동기전동기 구동용 인버터 스위치에서 개방성 고장이 발생하여도 구동 성능을 유지하기 위한 고장진단 기법이 제안 되었다. 제안한 고장진단 기법은 확장형 칼만필터에 의해 실시간으로 추정된 고정자 저항이 개방성 고장발생 시 고장발생 위치에 따라서 다르게 추정되는 것을 이용하여 고장을 진단한다. 고장진단을 위한 제어 알고리즘을 별도의 하드웨어 구성없이 기존의 제어 프로그램에 추가함으로써 비용을 저감 시킬 수 있으며 추정된 고정자 저항은 상수 변동에 영향을 받는 제어기의 전동기 상수로 사용함으로써 제어 성능을 향상 시킬 수 있다. 제안한 고장진단 기법의 타당성은 시뮬레이션과 실험을 통하여 검증하였다.

Fault Diagnosis in Semiconductor Etch Equipment Using Bayesian Networks

  • Nawaz, Javeria Muhammad;Arshad, Muhammad Zeeshan;Hong, Sang Jeen
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권2호
    • /
    • pp.252-261
    • /
    • 2014
  • A Bayesian network (BN) based fault diagnosis framework for semiconductor etching equipment is presented. Suggested framework contains data preprocessing, data synchronization, time series modeling, and BN inference, and the established BNs show the cause and effect relationship in the equipment module level. Statistically significant state variable identification (SVID) data of etch equipment are preselected using principal component analysis (PCA) and derivative dynamic time warping (DDTW) is employed for data synchronization. Elman's recurrent neural networks (ERNNs) for individual SVID parameters are constructed, and the predicted errors of ERNNs are then used for assigning prior conditional probability in BN inference of the fault diagnosis. For the demonstration of the proposed methodology, 300 mm etch equipment model is reconstructed in subsystem levels, and several fault diagnosis scenarios are considered. BNs for the equipment fault diagnosis consists of three layers of nodes, such as root cause (RC), module (M), and data parameter (DP), and the constructed BN illustrates how the observed fault is related with possible root causes. Four out of five different types of fault scenarios are successfully diagnosed with the proposed inference methodology.

전류신호 해석에 의한 유도전동기 결함추출 연구 (A Study on Fault Detection of Induction Motor Using Current Signal Analysis)

  • 한상보;황돈하;강동식;손종덕
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.274-279
    • /
    • 2007
  • The fault identification of electrical rotating machinery have been special interests due to one of important elements in the industrial production line. It is directly related with products quality and production costs. The sudden breakdown of a motor will affect to the shut down of the whole processes. Therefore, rotating machines are required to a periodic diagnosis and maintenance for improving its reliability and increasing their lifetime. The objective of this work is to develop the diagnosis system with current signals for the effective identification of healthy and faulty motors using the developed diagnosis algorithm, which consists of the feature calculation, feature extraction, and feature classification procedures.

  • PDF