• Title/Summary/Keyword: Fault current ratio

Search Result 131, Processing Time 0.028 seconds

Development of HIF Detection Rules for Distribution Line (배전선로 보호를 위한 고저항 사고 검출 룰의 개발)

  • Kim, K.H.;Chang, S.I.;Choi, S.K.;Choi, J.H.;Hwang, E.C.;Kim, N.H.;Kang, Y.C.;Park, J.K.;Kim, I.D.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1006-1008
    • /
    • 1997
  • This paper presents the logic based High Impedance Fault(HIF) detection rules for distribution lines. Due to the characteristics of HIF, which shows low current on relaying points, it is difficult to detect the fault occurred in distribution line by the conventional overcurrent relay(OCR) and/or harmonics relay. The HIF data were generated by using TACS in EMTP. In this paper, The harmonic index is defined as the ratio of harmonic component to fundamental component. The proposed HIF detection rules are obtained by analysing the difference between normal condition and HIF condition.

  • PDF

LVRT Control Strategy of Grid-connected Wind Power System (계통 연계형 풍력 발전 시스템의 LVRT 제어 전략)

  • Shin, Ho-Joon;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.182-190
    • /
    • 2011
  • This paper proposes a LVRT (Low Voltage Ride Through) control strategy which should be satisfied by grid-connected wind power system when grid faults occur. The LVRT regulation indicates rules or actions which have to be executed according to the voltage dip ratio and the fault duration. Especially the wind power system has to support the grid with specified reactive current to secure the grid stability when voltage reduction ratio is over 10%. The LVRT regulation in this paper is based on the German Grid Code and full-scale variable speed wind power conversion system is considered for LVRT control strategy. The proposed LVRT control strategy satisfies not only LVRT regulation but also makes power balance between wind turbine and power system through additional DC link voltage regulation algorithms. Because it is impossible to control grid side power when the 3-phase to ground fault occurs, the DC link voltage is controlled by a generator side inverter using the DC link voltage control strategy. Through the simulation and experiment result, the proposed LVRT control strategy is evaluated and its effectiveness is verified.

Current State of Stress in South-East Korea (한반도 남동부의 현생 응력장)

  • Lee, Jun-Bok;Chang, Chan-Dong
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.299-307
    • /
    • 2007
  • We collected data of hydraulic fracturing tests and overcoring tests conducted in 84 boreholes in the south-east Korea in order to analyze the contemporary state of stress in this region. The average direction of the maximum horizontal stress was determined to be $N66^{\circ}{\pm}31^{\circ}E$. The relative magnitudes of the three principal stresses was ${\sigma}_v$ (vertical stress) < ${\sigma}_h$ (minimum horizontal stress) < ${\sigma}_H$ (maximum horizontal stress), indicating thrust fault stress regime. The stress ratio K (horizontal stress/vertical stress) was relatively high (2.2

Development of Power System Impedance Analyzer on the Electric Railway (전기철도 급전계통 임피던스 분석장치 개발)

  • Lee, Chang-Mu;Chang, Sang-Hoon;Han, Moon-Seob;Oh, Kwang-Hae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.387-389
    • /
    • 1998
  • For the continuous and exact measurement of load impedance of AC power system on the electric railway, this paper presents a method to show the load area to resistance(R)-reactance(X) plane of impedance plane. The load area is presented in terms of impedance which is in the ratio of voltage and current continuously measured and impedance plane indicates the protection area of fault locator. The proposed method is verified its reasonability by computer simulation, and using this method we will develop the power system impedance analyser which is available actual application.

  • PDF

Temperature Properties about SMD Inductor Core of Union Type (일체형 SMD Inductor 코어에 대한 온도 특성)

  • Kim, Ki-Joon
    • 전자공학회논문지 IE
    • /
    • v.47 no.2
    • /
    • pp.32-37
    • /
    • 2010
  • In this study, to develop union type SMD inductor core needs to have the desire of super miniaturization and high reliability, it analyzed temperature properties due to electric power value. As the temperature of electronic parts rise, it bring to technical obstacles that parts can not normal operation, it reduce the span of life to raise the fault ratio. Also, it impact to the parts by heat change power and expansive power, it can not behave exactly, and it have an effect on reliability. It measured the difference value between conditional temperature and parts temperature to union type SMD inductor core. As the results of simulation using D.C. current and resistor($R_dc$), it obtained the excellent regular current values at rising temperature of 40[$^{\circ}C$].

Analysis on the Improvement of Power Capacity Increase in the Transformer-Type SFCL with Neutral Lines (중성선을 갖는 변압기형 초전도 한류기의 용량증대 개선 연구)

  • Cho, Yong-Sun;Choi, Hyo-Sang;Kim, Deog-Goo;Go, Sung-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1438-1443
    • /
    • 2011
  • The increase of power capacity in the superconducting fault current limiter (SFCL) is essential for application into the power grid. To achieve this, when superconducting units were connected in series and parallel, the unbalanced quenching characteristics between superconducting units generated by different critical current behavior should be improved. In the transformer-type SFCL, the superconducting units connected in series could be simultaneously quenched by the connection of neutral lines between secondary coils and superconducting units. From this the consumed power in superconducting units was equally distributed. In addition, the more the turn ratio of the transformer was reduced, the more consumed power in the superconducting units was reduced by the decrease of the induction voltage generated in the superconducting units. From those results, the transformer-type SFCL using neutral lines could increase the power capacity of the SFCL by the equal power division into the superconducting units.

Semi-active eddy current pendulum tuned mass damper with variable frequency and damping

  • Wang, Liangkun;Shi, Weixing;Zhou, Ying;Zhang, Quanwu
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.65-80
    • /
    • 2020
  • In order to protect a structure over its full life cycle, a novel tuned mass damper (TMD), the so-called semi-active eddy current pendulum tuned mass damper (SAEC-PTMD), which can retune its frequency and damping ratio in real-time, is proposed in this study. The structural instantaneous frequency is identified through a Hilbert-Huang transformation (HHT), and the SAEC-PTMD pendulum is adjusted through an HHT-based control algorithm. The eddy current damping parameters are discussed, and the relationship between effective damping coefficients and air gaps is fitted through a polynomial function. The semi-active eddy current damping can be adjusted in real-time by adjusting the air gap based on the linear-quadratic-Gaussian (LQG)-based control algorithm. To verify the vibration control effect of the SAEC-PTMD, an idealized linear primary structure equipped with an SAEC-PTMD excited by harmonic excitations and near-fault pulse-like earthquake excitations is proposed as one of the two case studies. Under strong earthquakes, structures may go into the nonlinear state, while the Bouc-Wen model has a wild application in simulating the hysteretic characteristic. Therefore, in the other case study, a nonlinear primary structure based on the Bouc-Wen model is proposed. An optimal passive TMD is used for comparison and the detuning effect, which results from the cumulative damage to primary structures, is considered. The maximum and root-mean-square (RMS) values of structural acceleration and displacement time history response, structural acceleration, and displacement response spectra are used as evaluation indices. Power analyses for one earthquake excitation are presented as an example to further study the energy dissipation effect of an SAECPTMD. The results indicate that an SAEC-PTMD performs better than an optimized passive TMD, both before and after damage occurs to the primary structure.

Rotor Failures Diagnosis of Squirrel Cage Induction Motors with Different Supplying Sources

  • Menacer, Arezki;Champenois, Gerard;Nait Said, Mohamed Said;Benakcha, Abdelhamid;Moreau, Sandrine;Hassaine, Said
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.219-228
    • /
    • 2009
  • The growing application and the numerous qualities of induction motors (1M) in industrial processes that require high security and reliability levels has led to the development of multiple methods for early fault detection. However, various faults can occur, such as stator short-circuits and rotor failures. Traditionally the diagnosis machine is done through a sinusoidal power supply, in the present paper we study experimentally the effects of the rotor failures, such as broken rotor bars in function of the ac supplying, the load and show the impact of the converter from diagnosis of the machine. The technique diagnosis used is based on the spectral analysis of stator currents or stator voltages respectively according to the types of induction motor ac supplying. So, four different ac supplying are considered: ${\odot}$ the IM is directly by the balanced three-phase network voltage source, ${\odot}$ the IM is fed by a sinusoidal current source given the controlled by hysteresis, ${\odot}$ the IM is fed (in open loop) by a scalar control imposing through ratio V/f=constant, ${\odot}$ the IM is controlled through a vector control using space vector pulse width modulation (SVPWM) technique inverter with an outer speed loop.

Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale

  • Sonmezer, Yetis Bulent;Bas, Selcuk;Isik, Nihat Sinan;Akbas, Sami Oguzhan
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.435-448
    • /
    • 2018
  • In order to make reliable earthquake-resistant design of civil engineering structures, one of the most important considerations in a region with high seismicity is to pay attention to the local soil condition of regions. It is aimed in the current study at specifying dynamic soil characteristics of Kirikkale city center conducting the 1-D equivalent linear and non-linear site response analyses. Due to high vulnerability and seismicity of the city center of Kirikkale surrounded by active many faults, such as the North Anatolian Fault (NAF), the city of Kirikkale is classified as highly earthquake-prone city. The first effort to determine critical site response parameter is to perform the seismic hazard analyses of the region through the earthquake record catalogues. The moment magnitude of the city center is obtained as $M_w=7.0$ according to the recorded probability of exceedance of 10% in the last 50 years. Using the data from site tests, the 1-D equivalent linear (EL) and nonlinear site response analyses (NL) are performed with respect to the shear modulus reduction and damping ratio models proposed in literature. The important engineering parameters of the amplification ratio, predominant site period, peak ground acceleration (PGA) and spectral acceleration values are predicted. Except for the periods between the period of T=0.2-1.0 s, the results from the NL are obtained to be similar to the EL results. Lower spectral acceleration values are estimated in the locations of the city where the higher amplification ratio is attained or vice-versa. Construction of high-rise buildings with modal periods higher than T=1.0 s are obtained to be suitable for the city of Kirikkale. The buildings at the city center are recommended to be assessed with street survey rapid structural evaluation methods so as to mitigate seismic damages. The obtained contour maps in this study are estimated to be effective for visually characterizing the city in terms of the considered parameters.

A Study on The Dangers and Their Countermeasures of Autonomous Vehicle (자율주행자동차 위험 및 대응방안에 대한 고찰)

  • Jung, Im Y.
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.90-98
    • /
    • 2020
  • Modern vehicles are evolving from manual to automatic driving. As the ratio of electrical equipment and software increases inside the vehicle, vehicles that support autonomous driving are becoming another open computer system that can communicate with the outside. The safety of the vehicle means the safety of both the passenger and the non-passenger. It is not clear whether the safety problem of ultimate autonomous vehicles can be solved by the current solution of computer systems related to fault tolerance and security. Autonomous vehicles should not be dangerous to people after they are released to the market, so it is necessary to proactively diagnose all the risks that can be predicted with current technology. This paper examines the current developments of autonomous vehicles and analyzes their dangers that threaten driving safety, as well as their countermeasures.