• Title/Summary/Keyword: Fault attack

Search Result 90, Processing Time 0.045 seconds

Novel Differential Fault Attack Using Function-Skipping on AES (함수 생략 오류를 이용하는 AES에 대한 신규 차분 오류 공격)

  • Kim, Ju-Hwan;Lee, JongHyeok;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1263-1270
    • /
    • 2020
  • The differential fault attacks (DFA) are cryptoanalysis methods that reveal the secret key utilizing differences between the normal and faulty ciphertexts, which occurred when artificial faults are injected into an encryption device. The conventional DFA methods use faults to falsify intermediate values. Meanwhile, we propose the novel DFA method that uses a fault to skip a function. The proposed method has a very low attack complexity that reveals the secret key using one fault injected ciphertext within seconds. Also, we proposed a method that filters out ciphertexts where the injected faults did not occur the function-skipping. It makes our method realistic. To demonstrate the proposed method, we performed fault injection on the Riscure's Piñata board. As a result, the proposed method can filter out and reveal the secret key within seconds on a real device.

Differential Fault Analysis on Block Cipher Piccolo-80 (블록 암호 Piccolo-80에 대한 차분 오류 공격)

  • Jeong, Ki-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.510-517
    • /
    • 2012
  • Piccolo-80 is a 64-bit ultra-light block cipher suitable for the constrained environments such as wireless sensor network environments. In this paper, we propose a differential fault analysis on Piccolo-80. Based on a random byte fault model, our attack can the secret key of Piccolo-80 by using the exhaustive search of $2^{24}$ and six random byte fault injections on average. It can be simulated on a general PC within a few seconds. This result is the first known side-channel attack result on Piccolo-80.

Differential Fault Attack on SSB Cipher (SSB 암호 알고리즘에 대한 차분 오류 공격)

  • Kang, HyungChul;Lee, Changhoon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.48-52
    • /
    • 2015
  • In this paper, we propose a differential fault analysis on SSB having same structure in encryption and decryption proposed in 2011. The target algorithm was designed using advanced encryption standard and has advantage about hardware implementations. The differential fault analysis is one of side channel attacks, combination of the fault injection attacks with the differential cryptanalysis. Because SSB is suitable for hardware, it must be secure for the differential fault analysis. However, using proposed differential fault attack in this paper, we can recover the 128 bit secret key of SSB through only one random byte fault injection and an exhausted search of $2^8$. This is the first cryptanalytic result on SSB having same structure in encryption and decryption.

A fault attack on elliptic curve scalar multiplication based on Euclidean Addition Chain (Euclidean Addition Chain을 사용하는 타원곡선 스칼라 곱셈 연산에 대한 오류 주입 공격)

  • Lee, Soo Jeong;Cho, Sung Min;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.5
    • /
    • pp.1019-1025
    • /
    • 2012
  • Fault attacks manipulate the computation of an algorithm and get information about the private key from the erroneous result. It is the most powerful attack for the cryptographic device. Currently, the research on error detection methods and fault attacks have been studied actively. S. Pontarelli et al. introduced an error detection method in 2009. It can detect an error that occurs during Elliptic Curve Scalar Multiplication (ECSM). In this paper, we present a new fault attack. Our attack can avoid the error detection method introduced by S. Pontarelli et al. We inject a bit flip error in the Euclidean Addition Chain (EAC) on the private key in ECSM and retrieve the private key.

A Study on Attack against NTRU Signature Implementation and Its Countermeasure (NTRU 서명 시스템 구현에 대한 오류 주입 공격 및 대응 방안 연구)

  • Jang, Hocheol;Oh, Soohyun;Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.3
    • /
    • pp.551-561
    • /
    • 2018
  • As the computational technology using quantum computing has been developed, several threats on cryptographic systems are recently increasing. Therefore, many researches on post-quantum cryptosystems which can withstand the analysis attacks using quantum computers are actively underway. Nevertheless, the lattice-based NTRU system, one of the post-quantum cryptosystems, is pointed out that it may be vulnerable to the fault injection attack which uses the weakness of implementation of NTRU. In this paper, we investigate the fault injection attacks and their previous countermeasures on the NTRU signature system and propose a secure and efficient countermeasure to defeat it. As a simulation result, the proposed countermeasure has high fault detection ratio and low implementation costs.

An Efficient DSA Signature Scheme Resistant to the Fault Analysis Attack (오류 분석 공격에 대응하는 효율적인 DSA 서명 기법)

  • Bae, Ki-Seok;Baek, Yi-Roo;Moon, Sang-Jae;Ha, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.5
    • /
    • pp.49-57
    • /
    • 2010
  • The fault cryptanalysis is a physical attack in which the key stored inside of the device can be extracted by occurring some faults when the device performs cryptographic algorithm. Since the international signature standard DSA(Digital Signature Algorithm) was known to be vulnerable to some fault analysis attacks, many researchers have been investigating the countermeasure to prevent these attacks. In this paper we propose a new countermeasure to compute DSA signature that has its immunity in the presence of faults. Since additional computational overhead of our proposal is only an inverse operation in signature process, the proposed DSA scheme can be implemented more efficiently compared to previous countermeasures.

(A Study on the Control Mechanism for Network Survivability in OVPN over IP/GMPLS over DWDM) (DWDM기반의 OVPN에서 네트워크 생존성을 위한 제어 메커니즘 연구)

  • Cho Kwang-Hyun;Jeong Chang-Hyun;Hong Kyung-Dong;Kim Sung-Un
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.9 s.339
    • /
    • pp.85-96
    • /
    • 2005
  • A ' Virtual Private Network (YPN) over Internet' has the benefits of being cost-effective and flexible. However, given the increasing demands for high bandwidth Internet and for reliable services in a 'VPN over Intemet,' an IP/GMPLS over DWDM backbone network is regarded as a very favorable approach for the future 'Optical VPN (OVPN)' due to the benefits of transparency and high data rate. Nevertheless, OVPN still has survivability issues such that a temporary fault can lose a large amount of data in seconds, moreover unauthorized physical attack can also be made on purpose to eavesdrop the network through physical components. Also, logical attacks can manipulate or stop the operation of GMPLS control messages and menace the network survivability of OVPN. Thus, network survivability in OVPN (i.e. fault/attack tolerant recovery mechanism considering physical structure and optical components, and secured transmission of GMPLS control messages) is rising as a critical issue. In this Paper, we propose a new path establishment scheme under shared risk link group (SRLG) constraint for physical network survivability. And we also suggest a new logical survivability management mechanism by extending resource reservation protocol-traffic engineering extension (RSVP-TE+) and link management protocol (LMP). Finally, according to the results of our simulation, the proposed algorithms are revealed more effective in the view point of survivability.

Development of Side Channel Attack Analysis Tool on Smart Card (사이드 채널 공격에 대한 스마트카드 안전성의 실험적 분석)

  • Han Dong-Ho;Park Jea-Hoon;Ha Jae-Cheol;Lee Sung-Jae;Moon Sang-Jae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.4
    • /
    • pp.59-68
    • /
    • 2006
  • Although the cryptographic algorithms in IC chip such as smart card are secure against mathematical analysis attack, they are susceptible to side channel attacks in real implementation. In this paper, we analyze the security of smart card using a developed experimental tool which can perform power analysis attacks and fault insertion attacks. As a result, raw smart card implemented SEED and ARIA without any countermeasure is vulnerable against differential power analysis(DPA) attack. However, in fault attack about voltage and clock on RSA with CRT, the card is secure due to its physical countermeasures.

Security Analysis of the Lightweight Cryptosystem TWINE in the Internet of Things

  • Li, Wei;Zhang, Wenwen;Gu, Dawu;Tao, Zhi;Zhou, Zhihong;Liu, Ya;Liu, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.793-810
    • /
    • 2015
  • The TWINE is a new Generalized Feistel Structure (GFS) lightweight cryptosystem in the Internet of Things. It has 36 rounds and the key lengths support 80 bits and 128 bits, which are flexible to provide security for the RFID, smart cards and other highly-constrained devices. Due to the strong attacking ability, fast speed, simple implementation and other characteristics, the differential fault analysis has become an important method to evaluate the security of lightweight cryptosystems. On the basis of the 4-bit fault model and the differential analysis, we propose an effective differential fault attack on the TWINE cryptosystem. Mathematical analysis and simulating experiments show that the attack could recover its 80-bit and 128-bit secret keys by introducing 8 faulty ciphertexts and 18 faulty ciphertexts on average, respectively. The result in this study describes that the TWINE is vulnerable to differential fault analysis. It will be beneficial to the analysis of the same type of other iterated lightweight cryptosystems in the Internet of Things.