• Title/Summary/Keyword: Fault Testing

Search Result 377, Processing Time 0.023 seconds

The Comparative Study of Software Optimal Release Time for the Distribution Based on Shape parameter (형상모수에 근거한 소프트웨어 최적방출시기에 관한 비교 연구)

  • Shin, Hyun-Cheul;Kim, Hee-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.8
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper, make a study decision problem called an optimal release policies after testing a software system in development phase and transfer it to the user. When correcting or modifying the software, because of the possibility of introducing new faults when correcting or modifying the software, infinite failure non-homogeneous Poisson process models presented and propose an optimal release policies of the life distribution applied fixed shape parameter distribution which can capture the increasing/decreasing nature of the failure occurrence rate per fault. In this paper, discuss optimal software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement. In a numerical example, after trend test applied and estimated the parameters using maximum likelihood estimation of inter-failure time data, make out estimating software optimal release time

Landslide risk zoning using support vector machine algorithm

  • Vahed Ghiasi;Nur Irfah Mohd Pauzi;Shahab Karimi;Mahyar Yousefi
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.267-284
    • /
    • 2023
  • Landslides are one of the most dangerous phenomena and natural disasters. Landslides cause many human and financial losses in most parts of the world, especially in mountainous areas. Due to the climatic conditions and topography, people in the northern and western regions of Iran live with the risk of landslides. One of the measures that can effectively reduce the possible risks of landslides and their crisis management is to identify potential areas prone to landslides through multi-criteria modeling approach. This research aims to model landslide potential area in the Oshvand watershed using a support vector machine algorithm. For this purpose, evidence maps of seven effective factors in the occurrence of landslides namely slope, slope direction, height, distance from the fault, the density of waterways, rainfall, and geology, were prepared. The maps were generated and weighted using the continuous fuzzification method and logistic functions, resulting values in zero and one range as weights. The weighted maps were then combined using the support vector machine algorithm. For the training and testing of the machine, 81 slippery ground points and 81 non-sliding points were used. Modeling procedure was done using four linear, polynomial, Gaussian, and sigmoid kernels. The efficiency of each model was compared using the area under the receiver operating characteristic curve; the root means square error, and the correlation coefficient . Finally, the landslide potential model that was obtained using Gaussian's kernel was selected as the best one for susceptibility of landslides in the Oshvand watershed.

Analysis of vibration characterization of a multi-stage planetary gear transmission system containing faults

  • Hao Dong;Yue Bi;Bing-Xing Ren;Zhen-Bin Liu;Yue, Li
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.389-403
    • /
    • 2023
  • In order to explore the influence of tooth root cracks on the dynamic characteristics of multi-stage planetary gear transmission systems, a concentrated parameter method was used to construct a nonlinear dynamic model of the system with 30-DOF in bending and torsion, taking into account factors such as crack depth, length, angle, error, time-varying meshing stiffness (TVMS), and damping. In the model, the energy method was used to establish a TVMS model with cracks, and the influence of cracks on the TVMS of the system was studied. By using the Runge- Kutta method to calculate the differential equations of system dynamics, a series of system vibration diagrams containing cracks were obtained, and the influence of different crack parameters on the vibration of the system was analyzed. And vibration testing experiments were conducted on the system with planetary gear cracks. The results show that when the gear contains cracks, the TVMS of the system will decrease, and as the cracks intensify, the TVMS will decrease. When cracks appear on the II-stage planetary gear, the system will experience impact effects with intervals of rotation cycles of the II-stage planetary gear. There will be obvious sidebands near the meshing frequency doubling, and the vibration trajectory of the gear will also become disordered. These situations will become more and more obvious as the degree of cracks intensifies. Through experiments, the theoretical results are in good agreement with experimental results, verifying the correctness of the theoretical model. This provides a theoretical basis for fault diagnosis and reliability research of the system.

A Software Reliability Cost Model Based on the Shape Parameter of Lomax Distribution (Lomax 분포의 형상모수에 근거한 소프트웨어 신뢰성 비용모형에 관한 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.171-177
    • /
    • 2016
  • Software reliability in the software development process is an important issue. Software process improvement helps in finishing with reliable software product. Infinite failure NHPP software reliability models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this study, reliability software cost model considering shape parameter based on life distribution from the process of software product testing was studied. The cost comparison problem of the Lomax distribution reliability growth model that is widely used in the field of reliability presented. The software failure model was used the infinite failure non-homogeneous Poisson process model. The parameters estimation using maximum likelihood estimation was conducted. For analysis of software cost model considering shape parameter. In the process of change and large software fix this situation can scarcely avoid the occurrence of defects is reality. The conditions that meet the reliability requirements and to minimize the total cost of the optimal release time. Studies comparing emissions when analyzing the problem to help kurtosis So why Kappa efficient distribution, exponential distribution, etc. updated in terms of the case is considered as also worthwhile. In this research, software developers to identify software development cost some extent be able to help is considered.

Design and Implementation of EMS(Element Management System) based on TMN Architecture (TMN체계의 EMS(Element Management System) 설계 및 구현)

  • 정연기;서승호;김영탁
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.1
    • /
    • pp.69-79
    • /
    • 1999
  • We have implemented the telecommunication management functions based on TMN (Telecommunications Management Network) architecture that is standardized by ISO/ITU-T. TMN has been developed to manage heterogeneous networks, services and equipment. In this paper, we first analyze the detailed functions of EMS (Element Management System) that performs core functions in the subnetwork management of TMN architecture. We propose an implementation method of EMS for efficient subnetwork management and verify its performance and functionality through detailed implementation and various testing. The proposed EMS consists of EML-Manager module and NML-Agent module. The EML-Manager module controls NEL (Network Element Layer) through the CMIP operations on the managed-objects. The NML-Agent module processes the requests from NMS (Network Management System) in upper layer. We have implemented NMS that performs only the NML-Manager function to test the proposed EMS, and we have used NE-Agent that was designed and implemented by the B-ISDN Lab. of Yeungnam University. The implemented EMS has three management functions: configuration management function, performance management function, and fault management function. We confirmed that the EMS operated normally as we tested the EMS. As further research works, the implementation of NMS with both NML-Manager function and SML-Agent function is required.

  • PDF

Modeling of a PEM Fuel Cell Stack using Partial Least Squares and Artificial Neural Networks (부분최소자승법과 인공신경망을 이용한 고분자전해질 연료전지 스택의 모델링)

  • Han, In-Su;Shin, Hyun Khil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.236-242
    • /
    • 2015
  • We present two data-driven modeling methods, partial least square (PLS) and artificial neural network (ANN), to predict the major operating and performance variables of a polymer electrolyte membrane (PEM) fuel cell stack. PLS and ANN models were constructed using the experimental data obtained from the testing of a 30 kW-class PEM fuel cell stack, and then were compared with each other in terms of their prediction and computational performances. To reduce the complexity of the models, we combined a variables importance on PLS projection (VIP) as a variable selection method into the modeling procedure in which the predictor variables are selected from a set of input operation variables. The modeling results showed that the ANN models outperformed the PLS models in predicting the average cell voltage and cathode outlet temperature of the fuel cell stack. However, the PLS models also offered satisfactory prediction performances although they can only capture linear correlations between the predictor and output variables. Depending on the degree of modeling accuracy and speed, both ANN and PLS models can be employed for performance predictions, offline and online optimizations, controls, and fault diagnoses in the field of PEM fuel cell designs and operations.

Weighted Analysis Method for Estimating the Orientation of Limestone Caves in Korea (가중치를 이용한 국내 석회동굴 발달 방향성 해석법 개발에 관한 연구)

  • Lee, Sang-Kyun;Park, Hyeong-Dong
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.39-52
    • /
    • 2014
  • Limestone caves that consist of main passages and branches are formed by a variety of processes, and have the characteristic of developing with a preferred orientation controlled by discontinuities such as bedding, joints, and faults around the cave. However, it is difficult to analyze a representative orientation from various orientations. To interpret the overall development orientation of limestone caves, this study proposes new development orientation analysis methods, termed the Average Span Ratio Method (ASRM) and the Individual Development Ratio Method (IDRM), using the weighting of persistence. Nine limestone caves in Korea were randomly selected for testing the new methods. The methods show a stronger development orientation for limestone caves than that obtained by traditional methods, which consider only the distribution of development orientations. Based on an analysis of the relationship between the average span and the dip angle of bedding, it is confirmed that shallowly dipping bedding is a major contributor to the expansion of span in limestone caves. In addition, using scan-line survey data acquired in the field, we perform an RMR analysis of stability of the ground around limestone caves.