• Title/Summary/Keyword: Fault Monitoring

Search Result 705, Processing Time 0.027 seconds

A study on the design of fault diagnostic system based on PCA (PCA-기반 고장 진단 시스템 설계에 관한 연구)

  • Lee, Young-Sam;Kim, Sung-Ho;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2272-2275
    • /
    • 2002
  • PCA(Principle Component Analysis) has emerged as a useful tool for process monitoring and fault diagnosis. The general approach requires the user to identify the root cause by interpreting the residual or principle components. This could be tedious and often impossible for a large process. In this paper, PCA scheme is combined with the FCM-based fault diagnostic algorithm to enhance the diagnosistic results. The implementation of the PCA-FCM based fault diagnostic system is done and its application is illustrated on the two-tank system.

  • PDF

Design and Performance Evaluation of a Marine Engine Fault Detection System Using a Proximity Sensor for a Marine Engine (선박 엔진용 근접 센서를 이용한 선박 엔진 고장진단시스템 설계 및 성능 분석)

  • Pack, In-Tack;Kim, Seung-Hwan;Kim, Dong-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.619-626
    • /
    • 2016
  • This paper proposes the design and performance evaluation of a marine engine fault detection system using a proximity sensor for marine engine. Non-linearity is greatly reduced by using the sensor without increasing the response time by applying the CANopen protocol. The CANopen protocol enables the sensor to send initial values and measurement data. The marine engine fault detection system measures crankshaft deflection and the bottom dead center of the crosshead in real-time, which maintains stability and prevents the serious breakdown of the marine engine by use of an interlocking alarm monitoring system.

A Case Study on Application of Fault Tolerant Control System to Boiler Controller in Power Plant (발전소 보일러 제어기에 대한 내고장성 제어 시스템의 적용에 관한 연구)

  • ;;;Zeung Nam Bien
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.1
    • /
    • pp.10-19
    • /
    • 1990
  • A fault tolerant control system, in which a digital back-up controller system is added on the existing analog control system, is developed for enhancing reliability of boiler control system in power plant. The digital back-up controller system(DBCS) has a multi-processor structure with capabilities of fault diagnosis, back-up control, self test, and graphic monitoring. Specifically, switching mechanism composed of expandable modules is designed so that back-up controller takes over any faulty control loops and the number of back-up control loops is determined as that of simultaneous faults. A process simulator that simulates the boiler analog control system is developed for safety test and performance evaluation prior to real plant application. DBCS is installed at the Ulsan thermal power plant, and fault tolerant control performance is assured under the faults that some controller modules are pulled out.

  • PDF

Intelligent Data Reduction Algorithm for Sensor Network based Fault Diagnostic System

  • Youk, Yui-Su;Kim, Sung-Ho;Joo, Young-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.301-308
    • /
    • 2009
  • In the modern life, machines are used for various areas in industries as the advance of science and industrial development has proceeded. In many machines, the rotating machines play an important role in many processes. Therefore, the development of fault diagnosis and monitoring system for rotating machines is required. An ubiquitous sensor network (USN) is a combination of the key computer science and engineering area technology including the wireless network, embedded system hardware and software, communication, real-time system, etc. It collects environmental information to realize a variety of functions. In this work, a data reduction algorithm for USN based remote fault diagnostic system which can be easily applied to previously built factories is proposed. To verify the feasibility of the proposed scheme, some simulations and experiments are executed.

Monitoring Method for Fault Tolerance of Real-time System (실시간 시스템의 Fault Tolerance를 위한 모니터링 기법)

  • SIM Jae-Hwan;KIM Jin-Hyun;YANG Jin-Seok;CHOI Jin-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.772-774
    • /
    • 2005
  • 안전성이 강조되는 실시간 시스템에서 시스템이 시간의 제약을 만족해야만 한다. 실시간 시스템에서 오류는 잘못된 응답 뿐 만이 아니라 시간적으로 늦은 응답에 대해서도 오류로 분류를 할 수가 있다. 이런 오류들을 모니터하기 위해서 본 논문에서는 커널에 Timed Conformance Monitor를 모듈로 추가하였다. Timed Conformance Monitor를 통해서 실시간 태스크가 시간의 제약을 만족하는지를 분석하고 또한 분석 결과에 따라 오류를 처리할 수 있는 Fault Handler를 추가하여 실시간 시스템에 대한 Fault Tolerance를 보장해 줄 수 있다.

  • PDF

Trend-adaptive Anomaly Detection with Multi-Scale PCA in IoT Networks (IoT 네트워크에서 다중 스케일 PCA 를 사용한 트렌드 적응형 이상 탐지)

  • Dang, Thien-Binh;Tran, Manh-Hung;Le, Duc-Tai;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.562-565
    • /
    • 2018
  • A wide range of IoT applications use information collected from networks of sensors for monitoring and controlling purposes. However, the frequent appearance of fault data makes it difficult to extract correct information, thereby sending incorrect commands to actuators that can threaten human privacy and safety. For this reason, it is necessary to have a mechanism to detect fault data collected from sensors. In this paper, we present a trend-adaptive multi-scale principal component analysis (Trend-adaptive MS-PCA) model for data fault detection. The proposed model inherits advantages of Discrete Wavelet Transform (DWT) in capturing time-frequency information and advantages of PCA in extracting correlation among sensors' data. Experimental results on a real dataset show the high effectiveness of the proposed model in data fault detection.

A precise sensor fault detection technique using statistical techniques for wireless body area networks

  • Nair, Smrithy Girijakumari Sreekantan;Balakrishnan, Ramadoss
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.31-39
    • /
    • 2021
  • One of the major challenges in wireless body area networks (WBANs) is sensor fault detection. This paper reports a method for the precise identification of faulty sensors, which should help users identify true medical conditions and reduce the rate of false alarms, thereby improving the quality of services offered by WBANs. The proposed sensor fault detection (SFD) algorithm is based on Pearson correlation coefficients and simple statistical methods. The proposed method identifies strongly correlated parameters using Pearson correlation coefficients, and the proposed SFD algorithm detects faulty sensors. We validated the proposed SFD algorithm using two datasets from the Multiparameter Intelligent Monitoring in Intensive Care database and compared the results to those of existing methods. The time complexity of the proposed algorithm was also compared to that of existing methods. The proposed algorithm achieved high detection rates and low false alarm rates with accuracies of 97.23% and 93.99% for Dataset 1 and Dataset 2, respectively.

A Study on the Correlation of Condition Monitoring Parameters of Functional Machine Failures. (기계시스템 파손에 따른 상태진단 파라미터의 상관관계 해석에 관한 연구)

  • 장래혁;강기홍;공호성;최동훈
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.285-290
    • /
    • 2002
  • Integrated condition monitoring is required to monitor effectively the machine conditions since machine failures could not be monitored accurately by any single measurement parameter. Application of various condition monitoring techniques is therefore preferred in many cases in order to diagnosis the machine condition. However it inevitably requires lots of maintenance cost and sometimes it could be proved to over-maintenance unnecessarily. This could happen especially when one measurement parameter closely correlates to another. Therefore correlation analysis of various monitoring parameters has to be performed to improve the reliability of diagnosis. In this work, Pearson correlation coefficient was used to analyze the correlation between condition monitoring parameters of an over-loaded machine system where the vibration, wear and temperature were monitored simultaneously. The result showed that Pearson correlation coefficient could be regarded as a good measure for evaluating the availability of condition monitoring technology.

A Study on the Correlation of Condition Monitoring Parameters of Functional Machine Failures. (기계시스템 파손에 따른 상태진단 파라미터의 상관관계 해석에 관한 연구)

  • 장래혁;강기홍;공호성;최동훈
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.252-259
    • /
    • 2001
  • Integrated condition monitoring is required to monitor effectively the machine conditions since machine failures could not be monitored accurately by any single measurement parameter. Application of various condition monitoring techniques is therefore preferred in many cases in order to diagnosis the machine condition. However it inevitably requires lots of maintenance cost and sometimes it could be proved to over-maintenance unnecessarily. This could happen especially when one measurement parameter closely correlates to another. Therefore correlation analysis of various monitoring parameters has to be performed to improve the reliability of diagnosis. In this work, Pearson correlation coefficient was used to analyze the correlation between condition monitoring parameters of an over-loaded machine system where the vibration, wear and temperature were monitored simultaneously. The result showed that Pearson correlation coefficient could be regarded as a good measure for evaluating the availability of condition monitoring technology.

  • PDF

Showerhead Surface Temperature Monitoring Method of PE-CVD Equipment (PE-CVD 장비의 샤워헤드 표면 온도 모니터링 방법)

  • Wang, Hyun-Chul;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.16-21
    • /
    • 2020
  • How accurately reproducible energy is delivered to the wafer in the process of making thin films using PE-CVD (Plasma enhanced chemical vapor deposition) during the semiconductor process. This is the most important technique, and most of the reaction on the wafer surface is made by thermal energy. In this study, we studied the method of monitoring the change of thermal energy transferred to the wafer surface by monitoring the temperature change according to the change of the thin film formed on the showerhead facing the wafer. Through this research, we could confirm the monitoring of wafer thin-film which is changed due to abnormal operation and accumulation of equipment, and we can expect improvement of semiconductor quality and yield through process reproducibility and equipment status by real-time monitoring of problem of deposition process equipment performance.