• Title/Summary/Keyword: Fault Management Method

Search Result 216, Processing Time 0.028 seconds

Development of 50kW High Efficiency Modular Fast Charger for Both EV and NEV (EV와 NEV 겸용 50kW급 고효율 모듈형 급속충전기 개발)

  • Kim, Min-Jae;Kim, Yeon-Woo;Prabowo, Yos;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.373-380
    • /
    • 2016
  • In this paper, a 50-kW high-efficiency modular fast charger for both electric vehicle (EV) and neighborhood electric vehicle (NEV) is proposed. The proposed fast charger consists of five 10-kW modules to achieve fault tolerance, ease of thermal management, and reduce component stress. Three-level topologies for both AC-DC and DC-DC converters are employed to use 600V MOSFET, resulting in ease of component selection and increase in switching frequency. The proposed three-level DC-DC converter with coupled inductor and its hybrid switching method can reduce the circulating current under wide output voltage range. A 50-kW prototype of the proposed fast charger was developed and tested to verify the validity of the proposed concept. Experimental results show that the proposed fast charger achieves a rated efficiency of 95.2% and a THD of less than 3%.

Study on Current Limiting Characteristics of YBCO Thin-Film Wire with Insulation Layer

  • Doo, Seung-Gyu;Du, Ho-Ik;Jeon, An-Gyoon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.20-23
    • /
    • 2013
  • When applying superconducting wire to power machines, an investigation needs to be carried out on the characteristics of wire phase changes in connection with the insulating layer. This study examined trends in the increase of the wire's resistance and the characteristics of its recovery from quenching by a current-applied cycle at temperatures of 90 K, 180 K, and 250 K. The procedure was conducted based on the thickness and presence (or absence) of the insulating wire layers. To achieve this, YBCO thin-film wires with the same critical temperatures were prepared with copper and stainless steel stabilizing layers. At levels (-one, three, and five-), with superior performance, polyimide pressure-sensitive adhesive tape was attached to the wires at a very low temperature. The eight prepared test samples were wound around the linear frames. The wire's voltage and current created from the phase change characteristics were measured at the wire's prescribed temperature, using the four-point probe method. The wire's resistance and recovery characteristics were examined for each cycle at temperatures of 90 K, 180 K, and 250 K.

A Risk Analysis on the Error Code of Vehicle Inspection Utilizing Portfolio Analysis (Portfolio 분석을 활용한 자동차 검사의 부적합항목에 대한 위험도분석)

  • Choi, Kyung-Im;Kim, Tae-Ho;Lee, Soo-Il
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.121-127
    • /
    • 2012
  • Vehicle Inspection System is to examine the condition of vehicle regularly at the national level to protect lives and properties of the people from traffic accidents due to vehicle's fault. However, the vehicle inspection method, criteria, period and effectiveness have become a controversial issue, because of examining safety management of vehicle by drivers regardless of regular vehicle inspection. Therefore, the aim of this study is to investigate vehicle inspection timeliness and risk level of inspection items through basic statistical survey and portfolio analysis. The results of the research through practical analysis are: (1) The inspection failure rates between 3 and 6 model year tend to increase. (2) The failure of inspection items for safety highly impacts on traffic accident rate in terms of accident risks. (3) According to the result of portfolio analysis, faulty items located 1st quadrant are riding device, driveline system, controlling device, steering actuator, and fuel system.

Performance Analysis of Error Recovery System on Distributed Multimedia Environment (분산 멀티미디어 환경에서 실행되는 오류 복구 시스템의 성능 분석)

  • Ko Eung-Nam
    • Journal of Digital Contents Society
    • /
    • v.6 no.1
    • /
    • pp.85-88
    • /
    • 2005
  • The requirement of distributed multimedia applications is the need for sophisticated QoS(quality of service) management. In terms of distributed multimedia systems, the most important catagories for quality of service are a timeless, volume, and reliability. In this paper, we discuss a method for increasing reliability through fault tolerance. We describe the desist and implementation of the ERA running on distributed multimedia environment ERA is a system is able to recover automatically a software error based on distributed multimedia. This paper explains a performance analysis of an error recovery system running on distributed multimedia environment using the rule-based DEVS modeling and simulation techniques. In DEVS, a system has a time base, inputs, states, outputs, and functions.

  • PDF

A Study on the Development of Safety Standard through the Risk Assessment for Fuel Cell System Applied to UAV (무인 비행체용 연료전지 시스템 위험요소 분석을 통한 안전기준 개발 연구)

  • TAEHEON KIM;JAEUK CHOI;INROK CHO;JUNGWOON LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.1
    • /
    • pp.56-65
    • /
    • 2024
  • Fuel cell powered unmanned aerial vehicles (UAV) are globally being developed for various application according to hydrogen roadmap. However, safety standards for hydrogen fuel cell for UAV have not been established. Therefore, in this study, we derive safety data based on risk assessment to develop safety standards for fuel cells for UAV. We use fault tree analysis method which is broadly used in hydrogen facilities as a risk assessment tool. We set hydrogen leaks and fires as top events and derived the basic events. Safety data for the basic events were derived by quoting overseas safety standards related to fuel cells. The safety data will be used for developing fuel cell inspection standard according to Act on Hydrogen Economy Promotion and Hydrogen Safety Management.

A Study on Method for Applying CBM+ in Missile for Effective Health Management (효과적인 건전성 관리를 위한 유도탄 CBM+ 적용 방안 연구)

  • Youn-Ho Lee;Seong-Mok Kim;Ji-Won Kim;Jae-Woo Jung;Jung Won Park;Yong Soo Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.294-303
    • /
    • 2024
  • The objective of condition-based maintenance plus(CBM+) is to improve the availability and maintenance efficiency of missiles, bolstering national defense capabilities. This study proposes an application of CBM+ to enhance the reliability and the safety of missiles, which are the devices typically stored for long durations. CBM+ CBM+ does not only contribute to defense capabilities, but it also aims to reduce maintenance costs. This study focuses particularly on the dormant stage of the missile life-cycle, in which various failure modes and environmental impacts on failure mechanisms are investigated. The effectiveness of maintenance strategies and the implementation of CBM+ is evaluated using simulation data.

Hardware-In-the-Loop Simulation of ECU using Reverse Engineering (역공학을 이용한 ECU의 Hardware-In-the-Loop Simulation)

  • Park, Ji-Myoung;Ham, Won-Kyung;Ko, Min-Suk;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • Increasing the proportion of an embedded system in automotive industry, test methods for evaluation and fault detection of the embedded system have been researched. HILS is a test method that is used in the development and test of complex real-time embedded systems. In this study, we defined the HILS method of the ECU, one of the embedded systems used in automobiles. Our method is to create a test model that can provide a virtual vehicle environment to the ECU on the basis of the actual vehicle data. The test model has reference information that can transmit the sensor signal and CAN Message into the ECU from HILS tester. In this study, the HILS can detect faults of the target ECU.

Intelligent Multi-Agent Distributed Platform based on Dynamic Object Group Management using Fk-means (Fk means를 이용한 동적객체그룹관리기반 지능형 멀티 에이전트 분산플랫폼)

  • Lee, Jae-wan;Na, Hye-Young;Mateo, Romeo Mark A.
    • Journal of Internet Computing and Services
    • /
    • v.10 no.1
    • /
    • pp.101-110
    • /
    • 2009
  • Multi-agent systems are mostly used to integrate the intelligent and distributed approaches to various systems for effective sharing of resources and dynamic system reconfigurations. Object replication is usually used to implement fault tolerance and solve the problem of unexpected failures to the system. This paper presents the intelligent multi-agent distributed platform based on the dynamic object group management and proposes an object search technique based on the proposed filtered k-means (Fk-means). We propose Fk-means for the search mechanism to find alternative objects in the event of object failures and transparently reconnect client to the object. The filtering range of Fk-means value is set only to include relevant objects within the group to perform the search method efficiently. The simulation result shows that the proposed mechanism provides fast and accurate search for the distributed object groups.

  • PDF

An Empirical Study on the Quality Reliability of the Start-up performance of the Fixed Wing Aircraft at low temperature (고정익 항공기 저온 시동 성능의 품질 신뢰성 향상에 관한 실증적 연구)

  • Kim, DW;Jeong, SH
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.1
    • /
    • pp.169-188
    • /
    • 2018
  • Purpose: The purpose of this study is to analyze low-temperature starting performance of the light attacker and to search and improve the aircraft system including battery and Battery Charge and Control Unit(BCCU). Methods: In order to improve the starting up performance of the light attacker at low-temp, various deficiency cause were derived and analyzed using Fault Tree Analysis method. As a result, it was confirmed there were drawbacks in the charging and discharging mechanism of the battery. The inactivation of the battery's electrolyte at low-temp and the premature termination of the battery charge were the main cause. After long error and trial, we improved these problems by improving performance of battery and optimizing the charging algorithm of BCCU. Results: It was confirmed that the problems of starting up failures were solved through the combined performance test of the battery and BCCU, the ground test using the aircraft system and the operation test conducted by Korea Airforce operating unit for 3 months in winter. Conclusion: This study showed that the improvement of quality reliability was achieved and thus the start-up performance issue of the light attacker has been resolved at low temperature. And it is expected that the design methodologies of temperature-affected electrical system of aircraft will contribute to the development of the aircraft industry in the future.

A Study on the Failure Diagnosis of Transfer Robot for Semiconductor Automation Based on Machine Learning Algorithm (머신러닝 알고리즘 기반 반도체 자동화를 위한 이송로봇 고장진단에 대한 연구)

  • Kim, Mi Jin;Ko, Kwang In;Ku, Kyo Mun;Shim, Jae Hong;Kim, Kihyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.65-70
    • /
    • 2022
  • In manufacturing and semiconductor industries, transfer robots increase productivity through accurate and continuous work. Due to the nature of the semiconductor process, there are environments where humans cannot intervene to maintain internal temperature and humidity in a clean room. So, transport robots take responsibility over humans. In such an environment where the manpower of the process is cutting down, the lack of maintenance and management technology of the machine may adversely affect the production, and that's why it is necessary to develop a technology for the machine failure diagnosis system. Therefore, this paper tries to identify various causes of failure of transport robots that are widely used in semiconductor automation, and the Prognostics and Health Management (PHM) method is considered for determining and predicting the process of failures. The robot mainly fails in the driving unit due to long-term repetitive motion, and the core components of the driving unit are motors and gear reducer. A simulation drive unit was manufactured and tested around this component and then applied to 6-axis vertical multi-joint robots used in actual industrial sites. Vibration data was collected for each cause of failure of the robot, and then the collected data was processed through signal processing and frequency analysis. The processed data can determine the fault of the robot by utilizing machine learning algorithms such as SVM (Support Vector Machine) and KNN (K-Nearest Neighbor). As a result, the PHM environment was built based on machine learning algorithms using SVM and KNN, confirming that failure prediction was partially possible.