• Title/Summary/Keyword: Fault Event

Search Result 329, Processing Time 0.025 seconds

A Model on the OSI Fault Management Implementation for Effective Alarm Processing (효과적인 경보 처리를 위한 OSI 장애 관리 구현 모델)

  • 이재오;조국현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.4
    • /
    • pp.537-548
    • /
    • 1993
  • The OSI fault management is composed of specific management functions such as the Alarm Reporting Function, Event Report Management Function, and Log Control Function. The fault management is to notify and manage the events and the alarm data which are transfered as the information of the fault management may be managed effectively. And it is necessary to design the model of the fault management properly by using these functions for the study of network management activities. Therefore, in this paper, the integrated management model of the Event Report Management and Log Control Function based on Alarm Reporting Function is investigated. Also, the system component of alarm collector which is added in the manager system for the effective fault management is studied and proposed.

  • PDF

Zero-suppressed ternary decision diagram algorithm for solving noncoherent fault trees in probabilistic safety assessment of nuclear power plants

  • Woo Sik Jung
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2092-2098
    • /
    • 2024
  • Probabilistic safety assessment (PSA) plays a critical role in ensuring the safe operation of nuclear power plants. In PSA, event trees are developed to identify accident sequences that could lead to core damage. These event trees are then transformed into a core-damage fault tree, wherein the accident sequences are represented by usual and complemented logic gates representing failed and successful operations of safety systems, respectively. The core damage frequency (CDF) is estimated by calculating the minimal cut sets (MCSs) of the core-damage fault tree. Delete-term approximation (DTA) is commonly employed to approximately solve MCSs representing accident sequence logics from noncoherent core-damage fault trees. However, DTA can lead to an overestimation of CDF, particularly when fault trees contain many nonrare events. To address this issue, the present study introduces a new zero-suppressed ternary decision diagram (ZTDD) algorithm that averts the CDF overestimation caused by DTA. This ZTDD algorithm can optionally calculate MCSs with DTA or prime implicants (PIs) without any approximation from the core-damage fault tree. By calculating PIs, accurate CDF can be calculated. The present study provides a comprehensive explanation of the ZTDD structure, formula of the ZTDD algorithm, ZTDD minimization, probability calculation from ZTDD, strength of the ZTDD algorithm, and ZTDD application results. Results reveal that the ZTDD algorithm is a powerful tool that can quickly and accurately calculate CDF and drastically improve the safety of nuclear power plants.

Reactivated Timings of Yangsan Fault in the Sangcheon-ri Area, Korea (상천리 일대 양산단층의 재활동 연대)

  • Song, Yungoo;Park, Changyun;Sim, Ho;Choi, Woohyun;Son, Moon;Khulganakhuu, Chuluunbaatar
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.97-104
    • /
    • 2016
  • Here we firstly present that a timing of reactivated event of Yangsan fault, the major fault in the southeastern Korean Peninsula, by using combined approaches of the optimized illite-polytype quantification, the K-Ar age-dating, and the recently developed illite-age-analysis (IAA) approach for the fault clays from Sangcheon-ri area of Yangsan main fault line. Two chronological record of brittle fault-activation event at about 41.5~43.5 and 50.7 Ma were determined from 3 fault gouges suggesting a crucial reactivation time-scheme. Furthermore, the regional processes that drive tectonics to form and reactivate the Yangsan fault may be explained from the chronological analysis for additional sites along the Yangsan fault.

A Study on the Constructions of Fire Events Probabilistic Safety Assessment Model for Nuclear Power Plants (원자력발전소의 화재사건 확률론적안전성평가 모델 구축에 관한 연구)

  • Kang, Dae Il;Kim, Kilyoo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.187-194
    • /
    • 2016
  • A single fire event within a fire area can cause multiple initiating events considered in internal events probabilistic safety assessment (PSA). For an example, a fire event in turbine building fire area can cause a loss of the main feed-water and loss of off-site power initiating events. This fire initiating event could result in special plant responses beyond the scope of the internal events PSA model. One approach to address a fire initiating event is to develop a specific fire event tree. However, the development of a specific fire event tree is difficult since the number of fire event trees may be several hundreds or more. Thus, internal fire events PSA model has been generally constructed by modifications of the pre-developed internal events PSA model. New accident sequence logics not covered in the internal events PSA model are separately developed to incorporate them into the fire PSA model. Recently, many fire PSA models have fire induced initiating event fault trees not shown in an internal event PSA model. Up to now, there has been no analytical comparative study on the constructions of fire events PSA model using internal events PSA model with and without fault trees of initiating events. In this study, the changing process of internal events PSA model to fire events PSA model is analytically presented and discussed.

THE APPLICATION OF PSA TECHNIQUES TO THE VITAL AREA IDENTIFICATION OF NUCLEAR POWER PLANTS

  • HA JAEJOO;JUNG WOO SIK;PARK CHANG-KUE
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.259-264
    • /
    • 2005
  • This paper presents a vital area identification (VAI) method based on the current fault tree analysis (FTA) and probabilistic safety assessment (PSA) techniques for the physical protection of nuclear power plants. A structured framework of a top event prevention set analysis (TEPA) application to the VAI of nuclear power plants is also delineated. One of the important processes for physical protection in a nuclear power plant is VAI that is a process for identifying areas containing nuclear materials, structures, systems or components (SSCs) to be protected from sabotage, which could directly or indirectly lead to core damage and unacceptable radiological consequences. A software VIP (Vital area Identification Package based on the PSA method) is being developed by KAERI for the VAI of nuclear power plants. Furthermore, the KAERI fault tree solver FTREX (Fault Tree Reliability Evaluation eXpert) is specialized for the VIP to generate the candidates of the vital areas. FTREX can generate numerous MCSs for a huge fault tree with the lowest truncation limit and all possible prevention sets.

Risk analysis of offshore terminals in the Caspian Sea

  • Mokhtari, Kambiz;Amanee, Jamshid
    • Ocean Systems Engineering
    • /
    • v.9 no.3
    • /
    • pp.261-285
    • /
    • 2019
  • Nowadays in offshore industry there are emerging hazards with vague property such as act of terrorism, act of war, unforeseen natural disasters such as tsunami, etc. Therefore industry professionals such as offshore energy insurers, safety engineers and risk managers in order to determine the failure rates and frequencies for the potential hazards where there is no data available, they need to use an appropriate method to overcome this difficulty. Furthermore in conventional risk based analysis models such as when using a fault tree analysis, hazards with vague properties are normally waived and ignored. In other word in previous situations only a traditional probability based fault tree analysis could be implemented. To overcome this shortcoming fuzzy set theory is applied to fault tree analysis to combine the known and unknown data in which the pre-combined result will be determined under a fuzzy environment. This has been fulfilled by integration of a generic bow-tie based risk analysis model into the risk assessment phase of the Risk Management (RM) cycles as a backbone of the phase. For this reason Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) are used to analyse one of the significant risk factors associated in offshore terminals. This process will eventually help the insurers and risk managers in marine and offshore industries to investigate the potential hazards more in detail if there is vagueness. For this purpose a case study of offshore terminal while coinciding with the nature of the Caspian Sea was decided to be examined.

Direct fault-tree modeling of human failure event dependency in probabilistic safety assessment

  • Ji Suk Kim;Sang Hoon Han;Man Cheol Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.119-130
    • /
    • 2023
  • Among the various elements of probabilistic safety assessment (PSA), human failure events (HFEs) and their dependencies are major contributors to the quantification of risk of a nuclear power plant. Currently, the dependency among HFEs is reflected using a post-processing method in PSA, wherein several drawbacks, such as limited propagation of minimal cutsets through the fault tree and improper truncation of minimal cutsets exist. In this paper, we propose a method to model the HFE dependency directly in a fault tree using the if-then-else logic. The proposed method proved to be equivalent to the conventional post-processing method while addressing the drawbacks of the latter. We also developed a software tool to facilitate the implementation of the proposed method considering the need for modeling the dependency between multiple HFEs. We applied the proposed method to a specific case to demonstrate the drawbacks of the conventional post-processing method and the advantages of the proposed method. When applied appropriately under specific conditions, the direct fault-tree modeling of HFE dependency enhances the accuracy of the risk quantification and facilitates the analysis of minimal cutsets.

An Application of Fault Tree Analysis in Industrial Safety System (산업 안전시스템에 있어서 Fault Tree Analysis의 적용)

  • 김진규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.13 no.21
    • /
    • pp.43-50
    • /
    • 1990
  • Fault tree analysis(FTA) is available to the engineer for determining reliability of complex industrial safety system. Therefore quantitative aspects of FTA greatly multiply its power this paper proceeds of presenting the methodology of FTA, including an approach to constructing in fault tree. A working guide to the use of FTA for the purpose of cost/benefit determination in industrial safety system is given. Finally, an analytic method for uncertainty analysis of the top event of a complex system is described.

  • PDF

The Computer Fault Prediction and Diagnosis Fuzzy Expert System (컴퓨터 고장 예측 및 진단 퍼지 전문가 시스템)

  • 최성운
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.54
    • /
    • pp.155-165
    • /
    • 2000
  • The fault diagnosis is a systematic and unified method to find based on the observing data resulting in noises. This paper presents the fault prediction and diagnosis using fuzzy expert system technique to manipulate the uncertainties efficiently in predictive perspective. We apply a fuzzy event tree analysis to the computer system, and build up the fault prediction and diagnosis using fuzzy expert system that predicts and diagnoses the error of the system in the advance of error.

  • PDF

Level 1 probabilistic safety assessment of supercritical-CO2-cooled micro modular reactor in conceptual design phase

  • So, Eunseo;Kim, Man Cheol
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.498-508
    • /
    • 2021
  • Micro reactors are increasingly being considered for utilization as distributed power sources. Hence, the probabilistic safety assessment (PSA) of a direct supercritical-CO2-cooled fast reactor, called micro modular reactor (MMR), was performed in this study; this reactor was developed using innovative design concepts. It adopted a modular design and passive safety systems to minimize site constraints. As the MMR is in its conceptual design phase, design weaknesses and valuable safety insights could be identified during PSA. Level 1 internal event PSA was carried out involving literature survey, system characterization, identification of initiating events, transient analyses, development of event trees and fault trees, and quantification. The initiating events and scenarios significantly contributing to core damage frequency (CDF) were determined to identify design weaknesses in MMR. The most significant initiating event category contributing to CDF was the transients with the power conversion system initially available category, owing to its relatively high occurrence frequency. Further, an importance analysis revealed that the safety of MMR can be significantly improved by improving the reliability of reactor trip and passive decay heat removal system operation. The findings presented in this paper are expected to contribute toward future applications of PSA for assessing unconventional nuclear reactors in their conceptual design phases.