• 제목/요약/키워드: Fault Control

검색결과 1,596건 처리시간 0.025초

비선형 보일러 시스템에서의 이상허용제어 (Fault Tolerant Control for Nonlinear Boiler System)

  • 윤석민;김대우;이명의;권오규
    • 제어로봇시스템학회논문지
    • /
    • 제6권4호
    • /
    • pp.254-260
    • /
    • 2000
  • This paper deals with the development of fault tolerant control for a nonlinear boiler system with noise and disturbance. The MCMBPC(Multivariable Constrained Model Based Predictive Control) is adopted for the control of the specific boiler turbin model. The fault detection and diagnosis are accomplished with the Kalman filter and two bias estimators. Once a fault is detected, two Bias estimators are driven to estimate the fault and to discriminate Process fault and sensor fault. In this paper, a fault tolerant control scheme combining MCMBPC with a fault compensation method based on the bias estimator is proposed. The proposed scheme has been applied to the nonlinear boiler system and shown a satisfactory performance through some simulations.

  • PDF

Active Fault-Tolerant Control for a Class of Nonlinear Systems with Sensor Faults

  • Wang, Youqing;Zhou, Donghua;Qin, S.Joe;Wang, Hong
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권3호
    • /
    • pp.339-350
    • /
    • 2008
  • A general active fault-tolerant control framework is proposed for nonlinear systems with sensor faults. According to their identifiability, all sensor faults are divided into two classes: identifiable faults and non-identifiable faults. In the healthy case, the control objective is such that all outputs converge to their given set-points. A fault detection and isolation module is firstly built, which can produce an alarm when there is a fault in the system and also tell us which sensor has a fault. If the fault is identifiable, the control objective remains the same as in the healthy case; while if the fault is non-identifiable, the control objective degenerates to be such that only the healthy outputs converge to the set-points. A numerical example is given to illustrate the effectiveness and feasibility of the proposed method and encouraging results have been obtained.

강인한 고장진단과 고장허용저어에 관한 사례연구 (A case study on robust fault diagnosis and fault tolerant control)

  • 이종효;유준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.130-130
    • /
    • 2000
  • This paper presents a robust fault diagnosis and fault tolerant control lot the actuator and sensor faults in the closed-loop systems affected by unknown inputs or disturbances. The fault diagnostic scheme is based on the residual set generation by using robust Parity space approach. Residual set is evaluated through the threshold test and then fault is isolated according to the decision logic table. Once the fault diagnosis module indicates which actuator or sensor is faulty, the fault magnitude is estimated by using the disturbance-decoupled optimal state estimation and a new additive control law is added to the nominal one to override the fault effect on the system. Simulation results show that the method has definite fault diagnosis and fault tolerant control ability against actuator and sensor faults.

  • PDF

Fault Tolerant Control of Wind Turbine with Sensor and Actuator Faults

  • Kim, Jiyeon;Yang, Inseok;Lee, Dongik
    • 센서학회지
    • /
    • 제22권1호
    • /
    • pp.28-37
    • /
    • 2013
  • This paper presents a fault-tolerant control technique for wind turbine systems with sensor and actuator faults. The control objective is to maximize power production and minimize turbine loads by calculating a desired pitch angle within their limits. Any fault with a sensor and actuator can cause significant error in the pitch position of the corresponding blade. This problem may result in insufficient torque such that the power reference cannot be achieved. In this paper, a fault-tolerant control technique using a robust dynamic inversion observer and control allocation is employed to achieve successful pitch control despite these faults in the sensor and actuator. The observer based detection method is used to detect and isolate sensor faults by checking whether errors are larger than threshold values. In addition, the control allocation technique is adopted to tolerate actuator fault. Control allocation is one of the most commonly used fault-tolerant control techniques, especially for over-actuated systems. Further, the control allocation method can be used to achieve the power reference even in the event of blade actuator fault by redistributing the lost torque due to erroneous pitch position into non-faulty blade actuators. The effectiveness of the proposed method is demonstrated through simulations with a benchmark model of the wind turbine.

원격조종 비행체의 이상허용 제어 (Fault tolerant control for remotely piloted vehicle)

  • 김대우;손원기;권오규
    • 제어로봇시스템학회논문지
    • /
    • 제5권6호
    • /
    • pp.683-690
    • /
    • 1999
  • This paper deals with a fault-tolerant control method for robust control of RPV(Remotely Piloted Vehicle). To design the flight control system, the 6-DOF simulation program has been developed based on the dynamic model of RPV. A robust fault detection and diagnosis method proposed by Kwon et al. [8]-[10] is adopted to detect the actuator fault of RPV and to make the controller reconfiguration. The Hoo control method is applied to the flight control system. An integrated simulation for performance evaluation of the fault-tolerat\nt control system designed is performed via 6 DOF simulation and shows that the control system works even under the actuator fault.

  • PDF

가변구조 제어기법을 이용한 고장허용 현가장치 설계 (Design of Self-Repairing Suspension Systems via Variable Structure Control Scheme)

  • 김도현
    • 제어로봇시스템학회논문지
    • /
    • 제8권11호
    • /
    • pp.922-927
    • /
    • 2002
  • A variable structure control (VSC) based model following control system that possesses fault detection and isolation (FDI) capability as well as fault tolerance property is proposed. The nonlinear part of the proposed control law. whose magnitude is determined by sliding variables, plays the role of suppressing fault effect. Thus, approximate fault reconstruction is also possible via the analysis of sliding variables. The proposed algorithm is applied to an active suspension system of pound vehicles to verify its applicability.

종방향 차량 주행 시스템의 고장 진단 및 처리 알고리듬 (A Fault Diagnosis and Fault Handling Algorithm for a Vehicle Cruise Control System)

  • 이경수;문일기;안장모
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.216-221
    • /
    • 2004
  • This paper describes a fault detection and fault handling algorithm to be used in a longitudinal vehicle cruise control systems. The fault diagnosis system consists of two structures to generate proper residuals and to find that which component has a fault. A systematic design of the fault diagnosis system using model-based techniques is presented. A linear observer is used to create a set of signals sensitive to faults in a radar sensor. The fault handling system consists of two structures to compensate for faults and degraded system performance. Simulation results show that the algorithm is effective for a fault diagnosis and handling in a longitudinal vehicle cruise control system.

종방향 차량 주행 시스템의 고장 진단 및 처리 알고리듬 (A Fault Diagnosis and Fault Handling Algorithm for a Vehicle Cruise Control System)

  • 이경수;문일기;안장모
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.215-215
    • /
    • 2004
  • This paper describes a fault detection and fault handling algorithm to be used in a longitudinal vehicle cruise control systems. The fault diagnosis system consists of two structures to generate proper residuals and to find that which component has a fault. A systematic design of the fault diagnosis system using model-based techniques is presented. A linear observer is used to create a set of signals sensitive to faults in a radar sensor. The fault handling system consists of two structures to compensate for faults and degraded system performance. Simulation results show that the algorithm is effective for a fault diagnosis and handling in a longitudinal vehicle cruise control system.

Robust Fault-Tolerant Control for Robotic Systems

  • Shin, Jin-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.513-518
    • /
    • 1998
  • In this paper, a robust fault-tolerant control scheme for robot manipulators overcoming actuator failures is presented. The joint(or actuator) fault considered in this paper is the free-swinging joint failure and causes the loss of torque on a joint. The presented fault-tolerant control framework includes a normal control with normal(non-failed) operation, a fault detection and a fault-tolerant control to achieve task completion. For both no uncertainty case and uncertainty case, a stable normal con-troller and an on-line fault detection scheme are presented. After the detection and identification of joint failures, the robot manipulator becomes the underactuated robot system with failed actuators. A robust adaptive control scheme of robot manipulators with the detected failed-actuators using the brakes equipped at the failed(passive) joints is proposed in the presence of parametric uncertainty and external disturbances. To illustrate the feasibility and validity of the proposed fault-tolerant control scheme, simulation results for a three-link planar robot arm with a failed joint are presented.

  • PDF

4륜 조향을 이용한 Steer-by-Wire 시스템의 고장 허용 제어 전략 (Fault Tolerant Control Strategy for Four Wheel Steer-by-Wire Systems)

  • 노성훈;권백순
    • 자동차안전학회지
    • /
    • 제15권2호
    • /
    • pp.13-20
    • /
    • 2023
  • This paper presents a fault tolerant control strategy for Steer-by-Wire (SbW) systems. Among many problems to be solved before commercialization of SbW systems, maintaining reliability and fault tolerance in such systems are the most pressing issues. In most previous studies, dual steering motors are used to achieve actuation redundancy. However, relatively few studies have been conducted to introduce fault tolerant control strategies using rear wheel steering system. In this work, an actuator fault in front wheel steering is compensated by active rear wheel steering. The proposed fault tolerant control algorithm consists of disturbance observer and sliding mode control. The fault tolerant control performance of the proposed approach is validated via computer simulation studies with Carsim vehicle dynamics software and MATLAB/Simulink.