• Title/Summary/Keyword: Fault/Failure Detection

Search Result 209, Processing Time 0.026 seconds

A Study of FDIR S/W Design and Verification for Gyro Sensor of COMS Satellite (통신해양기상위성 자이로센서 FDIR 설계 및 검증에 관한 연구)

  • Lee, Hoon-Hee
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.95-102
    • /
    • 2008
  • COMS Satellite is automatically able to recover from any defined failure thanks to a full redundancy. This study assesses the effects of gyro failure on the COMS mission and analyzes the mechanism of Gyro Failure Detection, Isolation and Recovery about failure detection means, isolation and recovery actions and their consequences. At last, it checks the FDIR behavior from an injected failure on COMS simulator.

  • PDF

Failure Forecasting Technology of Electronic Control System Using Automobile Input/Output Signal Detection (자동차의 입출력 신호 검출을 통한 전자제어 시스템의 고장예측기술)

  • Lee, J.S.;Son, I.M.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.59-64
    • /
    • 2009
  • Electronic control system of the engine is composed of various sensors and actuators, This paper is concerned with fault analysis for the stable operation of it. We suggest the technology that can systematically and reliably analyze fault causes of sensors and actuators by using the fault generating program. In results, we can acquire the systematic road map of occurring faults as well as the valuable information related to the operations of sensors and actuators. These results should be very useful to get the classification of fault causes, develop an electronic control system of engine, and review control strategies of it.

  • PDF

A software reliability model with a Burr Type III fault detection rate function

  • Song, Kwang Yoon;Chang, In Hong;Choi, Min Su
    • International Journal of Reliability and Applications
    • /
    • v.17 no.2
    • /
    • pp.149-158
    • /
    • 2016
  • We are enjoying a very comfortable life thanks to modern civilization, however, comfort is not guaranteed to us. Development of software system is a difficult and complex process. Therefore, the main focus of software development is on improving the reliability and stability of a software system. We have become aware of the importance of developing software reliability models and have begun to develop software reliability models. NHPP software reliability models have been developed through the fault intensity rate function and the mean value functions within a controlled testing environment to estimate reliability metrics such as the number of residual faults, failure rate, and reliability of the software. In this paper, we present a new NHPP software reliability model with Burr Type III fault detection rate, and present the goodness-of-fit of the fault detection rate software reliability model and other NHPP models based on two datasets of software testing data. The results show that the proposed model fits significantly better than other NHPP software reliability models.

Fast Diagnosis Method for Submodule Failures in MMCs Based on Improved Incremental Predictive Model of Arm Current

  • Xu, Kunshan;Xie, Shaojun
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1608-1617
    • /
    • 2018
  • The rapid and correct isolation of faulty submodules (SMs) is of great importance for improving the reliability of modular multilevel converters (MMCs). Therefore, a fast diagnosis method containing fault detection and fault location determination was presented in this paper. An improved incremental predictive model of arm current was proposed to detect failures, and the multi-step prediction method was used to eliminate the negative impact of disturbances. Moreover, a control method was proposed to strengthen the fault characteristics to rapidly locate faulty arms and faulty SMs by detecting the variation rate of the SM capacitor voltage. The proposed method can rapidly and easily locate faulty SMs under different load conditions without the need for additional sensors. The experimental results have validated the effectiveness of the proposed method by using a single-phase MMC with four SMs per arm.

Sensor Failure Detection and Accommodation Based on Neural Networks (신경회로망을 이용한 센서 고장진단 및 극복)

  • 이균정;이봉기
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.82-91
    • /
    • 1998
  • This paper presents a neural networks based approach for the problem of sensor failure detection and accommodation for ship without physical redundancy in the sensors. The designed model consists of two neural networks. The first neural network is responsible for the failure detection and the second neural network is responsible for the failure identification and accommodation. On the yaw rate sensor of ship, simulation results indicates that the proposed method can be useful as failure detector and sensor estimator.

  • PDF

Study on the Reliability Analysis for Fault-Tolerant Dual Ethernet (고장극복 기능이 있는 이중망의 신뢰도 분석에 대한 연구)

  • Kim, Hyun-Sil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.107-114
    • /
    • 2007
  • This paper describes the Petri Net(PN) model for reliability analysis of fault-tolerant dual Ethernet which Is applied in Naval Combat System. The network for Naval Combat System performs failure detection and auto path recovery by handling redundant path in case of temporary link failure. After studying the behavior of this kind of network, the reliability analysis model is proposed using stochastic Petri Net and continuous-time Markov chains. Finally, the numerical result is analyzed according to changing the failure rate and the recover rate of link.

Fault Detection and Diagnosis System for a Three-Phase Inverter Using a DWT-Based Artificial Neural Network

  • Rohan, Ali;Kim, Sung Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.238-245
    • /
    • 2016
  • Inverters are considered the basic building blocks of industrial electrical drive systems that are widely used for various applications; however, the failure of electronic switches mainly affects the constancy of these inverters. For safe and reliable operation of an electrical drive system, faults in power electronic switches must be detected by an efficient system that is capable of identifying the type of faults. In this paper, an open switch fault identification technique for a three-phase inverter is presented. Single, double, and triple switching faults can be diagnosed using this method. The detection mechanism is based on stator current analysis. Discrete wavelet transform (DWT) using Daubechies is performed on the Clarke transformed (-) stator current and features are extracted from the wavelets. An artificial neural network is then used for the detection and identification of faults. To prove the feasibility of this method, a Simulink model of the DWT-based feature extraction scheme using a neural network for the proposed fault detection system in a three-phase inverter with an induction motor is briefly discussed with simulation results. The simulation results show that the designed system can detect faults quite efficiently, with the ability to differentiate between single and multiple switching faults.

Timely Sensor Fault Detection Scheme based on Deep Learning (딥 러닝 기반 실시간 센서 고장 검출 기법)

  • Yang, Jae-Wan;Lee, Young-Doo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.163-169
    • /
    • 2020
  • Recently, research on automation and unmanned operation of machines in the industrial field has been conducted with the advent of AI, Big data, and the IoT, which are the core technologies of the Fourth Industrial Revolution. The machines for these automation processes are controlled based on the data collected from the sensors attached to them, and further, the processes are managed. Conventionally, the abnormalities of sensors are periodically checked and managed. However, due to various environmental factors and situations in the industrial field, there are cases where the inspection due to the failure is not missed or failures are not detected to prevent damage due to sensor failure. In addition, even if a failure occurs, it is not immediately detected, which worsens the process loss. Therefore, in order to prevent damage caused by such a sudden sensor failure, it is necessary to identify the failure of the sensor in an embedded system in real-time and to diagnose the failure and determine the type for a quick response. In this paper, a deep neural network-based fault diagnosis system is designed and implemented using Raspberry Pi to classify typical sensor fault types such as erratic fault, hard-over fault, spike fault, and stuck fault. In order to diagnose sensor failure, the network is constructed using Google's proposed Inverted residual block structure of MobilieNetV2. The proposed scheme reduces memory usage and improves the performance of the conventional CNN technique to classify sensor faults.

An Instrument Fault Detection Scheme using Function Observers (함수관측자를 이용한 장치고장검출 기법)

  • Lee, Sang-Moon;Lee, Kee-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.91-97
    • /
    • 2006
  • A major difficulty with the practical application of the multiple observer based IFDI schemes is the computational burden of the residual generation. In this paper, a new residual generator that employs function observers is proposed to reduce the computational burden, and the design methods of the IFDIS, equipped with the residual generator, are presented. The function observers employed in the residual generator can be considered as a dual of the unknown input (function) observer And it can be designed to estimate the measurement errors that are due to sensor faults. The error estimates are further processed to generate the residuals by which reliable fault detection/isolation result car be obtained. The proposed scheme is more useful, in real-time application, than any other multiple state observer based IFDISs. It can be effectively applied to fault tolerant control because the failure effects can be compensated by the use of the estimates of measurement errors. The proposed IFDI scheme is applied to an inverted pendulum control system for the IFDI of failed sensor and fault compensation.

Analytical fault tolerant navigation system for an aerospace launch vehicle using sliding mode observer

  • Hasani, Mahdi;Roshanian, Jafar;Khoshnooda, A. Majid
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.53-64
    • /
    • 2017
  • Aerospace Launch Vehicles (ALV) are generally designed with high reliability to operate in complete security through fault avoidance practices. However, in spite of such precaution, fault occurring is inevitable. Hence, there is a requirement for on-board fault recovery without significant degradation in the ALV performance. The present study develops an advanced fault recovery strategy to improve the reliability of an Aerospace Launch Vehicle (ALV) navigation system. The proposed strategy contains fault detection features and can reconfigure the system against common faults in the ALV navigation system. For this purpose, fault recovery system is constructed to detect and reconfigure normal navigation faults based on the sliding mode observer (SMO) theory. In the face of pitch channel sensor failure, the original gyro faults are reconstructed using SMO theory and by correcting the faulty measurement, the pitch-rate gyroscope output is constructed to provide fault tolerant navigation solution. The novel aspect of the paper is employing SMO as an online tuning of analytical fault recovery solution against unforeseen variations due to its hardware/software property. In this regard, a nonlinear model of the ALV is simulated using specific navigation failures and the results verified the feasibility of the proposed system. Simulation results and sensitivity analysis show that the proposed techniques can produce more effective estimation results than those of the previous techniques, against sensor failures.