• Title/Summary/Keyword: Fault/Failure Detection

Search Result 208, Processing Time 0.025 seconds

Application of Envelop Analysis and Wavelet Transform for Detection of Gear Failure (기어 결함 검출을 위한 포락처리와 웨이블릿 변환의 적용)

  • Gu, Dong-Sik;Lee, Jeong-Hwan;Yang, Bo-Suk;Choi, Byeong-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.905-910
    • /
    • 2008
  • Vibration analysis is widely used in machinery diagnosis and the wavelet transform has also been implemented in many applications in the condition monitoring of machinery. In contrast to previous applications, this paper examines whether acoustic signal can be used effectively along vibration signal to detect the various local fault, in local fault of gearboxes using the wavelet transform. Moreover, envelop analysis is well known as useful tool for the detection of rolling element bearing fault. In this paper, a acoustic emission (AE) sensor is employed to detect gearbox damage by installing them around bearing housing at driven-end side. Signal processing is conducted by wavelet transform and enveloping to detect her fault all at once gearbox using AE signal.

A Study on the Fault Detection Technique of the Grid-Connected Photovoltaic System using Wavelet Transformation (웨이블렛 변환을 이용한 태양광 발전시스템의 고장진단에 관한 연구)

  • Lee, Jeong-Eun;Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.79-87
    • /
    • 2011
  • The fault detection technique of the grid-connected photovoltaic system using wavelet transform has been suggested in this paper. The additional hardware and sensors are required to detect the inverter failure in the conventional method, and it has the disadvantage of high cost and re-design problem if the inverter specification has been changed. The suggested method used the inverter voltage and current waveform to detect the failure and the location by the wavelet coefficients variations. The prompt and accurate diagnostic function is possible using the normalized standard deviation method. The merit of the proposed method is the simple calculation and precise diagnostic capabilities of the fault detection. The computer simulation is performed and the experimental result verifies the validity of the proposed method.

Development of Digital Fault Detection Systems for Screening Open and Short of Wire Harness (와이어 하네스 단선 단락 선별을 위한 디지털 고장 검출 시스템 개발)

  • A Ran Kim;Jae Wan Park;Ha Seon Kim;Jae Hoon Jeong;Sun Young Kim
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.140-149
    • /
    • 2023
  • Wire harness is a component for efficient control when electronic parts are required such as construction machinery and electric vehicles. With emerging issues such as autonomous driving and automation in construction, a wire harness composed of multiple cables has become an essential part because more electronic parts are required. However, when a wire harness failure occurs, systems can be stopped, accidents can occur, and economic damage can be significant. Therefore, in this paper, we developed a digital fault screening system that could easily and quickly diagnose faults in the wire harness. The principle of the developed system was to sequentially send pulse signals to the wire harness and use returned signals to perform fault detection. As a result of diagnosing faults using the developed failure detection system, a detection accuracy of 99.9 % was confirmed through the experiments.

Design of Observer-Based Fault Detection and Isolation techniques for Induction Motors (유도전동기를 위한 관측기 기반의 고장 감지 및 분리 기법 설계)

  • Han, Byung-Jo;Park, Gi-Kwang;Koo, Kyung-Wan;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.77-79
    • /
    • 2009
  • Nonlinear system fault detection and isolation of this paper is about the failure of unknown function approximation using neural network for fault detection and isolation techniques of induction motors were applied. observer-based fault signal residual value was used. Induction motor using the speed controller of the backstepping controller. Proposed fault detection and isolation to prove the performance of the simulation was applied to and the actual system.

  • PDF

State-Monitoring Component-based Fault-tolerance Techniques for OPRoS Framework (상태감시컴포넌트를 사용한 OPRoS 프레임워크의 고장감내 기법)

  • Ahn, Hee-June;Ahn, Sang-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.780-785
    • /
    • 2010
  • The OPRoS (Open Platform for Robotic Services) framework is proposed as an application runtime environment for service robot systems. For the successful deployment of the OPRoS framework, fault tolerance support is crucial on top of its basic functionalities of lifecycle, thread and connection management. In the previous work [1] on OPRoS fault tolerance supports, we presented a framework-based fault tolerance architecture. In this paper, we extend the architecture with component-based fault tolerance techniques, which can provide more simplicity and efficiency than the pure framework-based approach. This argument is especially true for fault detection, since most faults and failure can be defined when the system cannot meet the requirement of the application functions. Specifically, the paper applies two widely-used fault detection techniques to the OPRoS framework: 'bridge component' and 'process model' component techniques for fault detection. The application details and performance of the proposed techniques are demonstrated by the same application scenario in [1]. The combination of component-based techniques with the framework-based architecture would improve the reliability of robot systems using the OPRoS framework.

The Comparative Software Cost Model of Considering Logarithmic Fault Detection Rate Based on Failure Observation Time (로그형 관측고장시간에 근거한 결함 발생률을 고려한 소프트웨어 비용 모형에 관한 비교 연구)

  • Kim, Kyung-Soo;Kim, Hee-Cheul
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.335-342
    • /
    • 2013
  • In this study, reliability software cost model considering logarithmic fault detection rate based on observations from the process of software product testing was studied. Adding new fault probability using the Goel-Okumoto model that is widely used in the field of reliability problems presented. When correcting or modifying the software, finite failure non-homogeneous Poisson process model. For analysis of software cost model considering the time-dependent fault detection rate, the parameters estimation using maximum likelihood estimation of inter-failure time data was made. In this research, Software developers to identify the best time to release some extent be able to help is considered.

Implementation and Performance Analysis of High-availability System for Mission Computer (임무컴퓨터를 위한 고가용 시스템의 구현 및 성능분석)

  • Jeong, Jae-Yeop;Park, Seong-Jong;Lim, Jae-Seok;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.8
    • /
    • pp.47-56
    • /
    • 2008
  • MC(Mission Computer) performs important function in avionics system which tactic data processing, image processing and managing navigation system etc. In general, the fault of SPOF(Single Point Of Failure) in unity system can lead to failure of whole system. It can cause a failure of a mission and also can threaten to the life of the pilot. So, in this paper, we design the HA(Hight-availability) system so that dealing with the failure. And we use HA software like Heartbeat, Fake, DRBD and Bonding to manage HA system. Also we analyze the performance of HA system using the FDT(Fault Detection Time) for fast fault detection and MTTR(Mean Time To Repair) for mission continuity.

Realtime e-Actuator Fault Detection using Online Parameter Identification Method (온라인 식별 및 매개변수 추정을 이용한 실시간 e-Actuator 오류 검출)

  • Park, Jun-Gi;Kim, Tae-Ho;Lee, Heung-Sik;Park, Chansik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.376-382
    • /
    • 2014
  • E-Actuator is an essential part of an eVGT, it receives the command from the main ECU and controls the vane. An e-Actuator failure can cause an abrupt change in engine output and it may induce an accident. Therefore, it is required to detect anomalies in the e-Actuator in real time to prevent accidents. In this paper, an e-Actuator fault detection method using on-line parameter identification is proposed. To implement on-line fault detection algorithm, many constraints are considered. The test input and sampling rate are selected considering the constraints. And new recursive system identification algorithm is proposed which reduces the memory and MCU power dramatically. The relationship between the identified parameters and real elements such as gears, spring and motor are derived. The fault detection method using the relationship is proposed. The experiments with the real broken gears show the effectiveness of the proposed algorithm. It is expected that the real time fault detection is possible and it can improve the safety of eVGT system.

Design of the robust propulsion controller using nonlinear ARX model (비선형 ARX 모델을 이용한 센서 고장에 강인한 추진체 제어기 설계)

  • Kim, Jung-Hoe;Gim, Dong-Choon;Lee, Sang-Jeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.599-602
    • /
    • 2011
  • A propulsion controller for one-time flight vehicles should be designed robustly so that it can complete its missions even in case sensor failures. These vehicles improve their fault tolerance by back-up sensors prepared for the failure of major sensors, which raises the total cost. This paper presents the NARX model which substitutes vehicles' velocity sensors, and detects failure of sensor signals by using model based fault detection. The designed NARX model and fault detection algorithm were optimized and installed in TI's TMS320F2812 so that they were linked to HILS instruments in real-time. The designed propulsion controller made the vehicle to have better fault tolerance with fewer sensors and to complete its missions under a lot of complicated failure situations. The controller's applicability was finally confirmed by tests under the HILS environment.

  • PDF

Fault Diagnosis in Gear Using Adaptive Signal Processing (능동 신호 처리 이용한 기어의 이상 진단)

  • Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1114-1118
    • /
    • 2000
  • Impulsive sound and vibration signals in gear are often associated with their faults. Thus these impulsive sound and vibration signals can be used as indicators in the diagnosis of gear fault. The early detection of impulsive signal due to gear fault prevents from complete failure in gear. However it is often difficult to make objective measurement of impulsive signals because of background noise signals. In order to ease the detection of impulsive signals embedded in background noise, we enhance the impulsive signals using adaptive signal processing.

  • PDF