• 제목/요약/키워드: Fatty acid disorders

검색결과 70건 처리시간 0.028초

Identification of predictive biomarkers of peri- and postpartum disorders in dairy cows

  • Jeong, Jae-Kwan;Hur, Tai-Young;Jung, Young-Hun;Kang, Hyun-Gu;Kim, Ill-Hwa
    • 대한수의학회지
    • /
    • 제59권1호
    • /
    • pp.1-8
    • /
    • 2019
  • We aimed to identify predictive markers of peri- and postpartum disorders in dairy cows. Data regarding peri- and postpartum disorders, serum metabolites, body condition score (BCS), and rectal temperature, were collected from 227 dairy cows, which were allocated to healthy (n = 57) and diseased (n = 170) groups. Serum non-esterified fatty acid (NEFA) concentration was higher in diseased than healthy cows 4 weeks before (p < 0.01) and immediately after (p = 0.05) calving. Serum alanine aminotransferase (AST) activity was higher (p < 0.05) in diseased than healthy cows 1 and 2 weeks after calving, whereas total cholesterol (TCH) concentration was lower (p < 0.05-0.0001) in diseased cows 4 weeks before, and after calving. BCS was higher (p < 0.05) in diseased than healthy cows 4 weeks before calving, but lower (p < 0.01) in diseased cows 8 weeks after calving. Rectal temperature was higher (p < 0.05-0.01) in diseased than healthy cows between 2 and 14 days postpartum. In conclusion, high serum NEFA and AST concentrations and lower TCH concentration during the peripartum period, and high prepartum BCS and postpartum rectal temperature, could be used as biomarkers to predict the subsequent development of peri- and postpartum disorders.

Potential role of phytochemicals in brain plasticity: Focus on polyunsaturated fatty acids

  • Yook, Jang Soo;Lee, Minchul
    • 운동영양학회지
    • /
    • 제24권1호
    • /
    • pp.14-18
    • /
    • 2020
  • [Purpose] Functional foods are thought to strongly influence the structure and function of the brain. Previous studies have reported that brain-boosting diets may enhance neuroprotective functions. Certain foods are particularly rich in nutrients like phytochemicals that are known to support brain plasticity; such foods are commonly referred to as brain foods. [Methods] In this review, we briefly explore the scientific evidence supporting the neuroprotective activity of a number of phytochemicals with a focus on phenols and polyunsaturated fatty acids such as flavonoid, olive oil, and omega-3 fatty acid. [Results] The aim of this study was to systematically examine the primary issues related to phytochemicals in the brain. These include (a) the brain-gut-microbiome axis; (b) the effects of phytochemicals on gut microbiome and their potential role in brain plasticity; (c) the role of polyunsaturated fatty acids in brain health; and (d) the effects of nutrition and exercise on brain function. [Conclusion] This review provides evidence supporting the view that phytochemicals from medicinal plants play a vital role in maintaining brain plasticity by influencing the brain-gut-microbiome axis. The consumption of brain foods may have neuroprotective effects, thus protecting against neurodegenerative disorders and promoting brain health.

Association of Fatty Acid Ethyl Esters in Meconium of Neonates with Growth Deficits at Birth: a Prospective, Single-Centre Cohort Study

  • Lee, Hyun-Seung;Kim, Yeon Hee;Kwak, Ho-Seok;Han, Jung-Yeol;Jo, Sun-Jin;Lee, Hae Kook
    • Journal of Korean Medical Science
    • /
    • 제33권50호
    • /
    • pp.318.1-318.10
    • /
    • 2018
  • Background: In this prospective cohort study, we investigated the association between fatty acid ethyl esters (FAEEs) in meconium as biomarkers of prenatal ethanol exposure and growth deficits, as birth outcomes, that constitute several of the key cardinal features of fetal alcohol syndrome. Methods: A total of 157 meconium samples were collected from enrolled infants within 24 hours of birth, and nine FAEEs were quantified using liquid chromatography/tandem mass spectrometry. The relationships between cumulative concentrations of nine species of FAEEs in meconium and birth parameters of growth (age-sex-specific centiles of head circumference [HC], weight, and length) and respective and combined birth outcomes of growth deficits (HC ${\leq}10th$ centile, weight ${\leq}10th$ centile, and length ${\leq}10th$ centile) were determined. Results: Multivariate logistic regression analysis demonstrated that higher cumulative concentrations of meconium FAEEs correlated with elevated risks for HC and length, both, 10th percentile or less (adjusted odds ratio [aOR], 2.94; 95% confidence interval [CI], 1.12-7.74; P = 0.029) and HC and weight and length, all of them, 10th percentile or less (aOR, 3.27; 95% CI, 1.12-9.59; P = 0.031). Conclusion: The elevated cumulative FAEEs in meconium were associated with combined growth deficits at birth, specifically HC and length, both, 10th percentile or less, which might be correlated with detrimental alcohol effects on fetal brain and bone development, suggesting a plausible alcohol-specific pattern of intrauterine growth restriction.

Porphyromonas gingivalis exacerbates the progression of fatty liver disease via CD36-PPARγ pathway

  • Ahn, Ji-Su;Yang, Ji Won;Oh, Su-Jeong;Shin, Ye Young;Kang, Min-Jung;Park, Hae Ryoun;Seo, Yoojin;Kim, Hyung-Sik
    • BMB Reports
    • /
    • 제54권6호
    • /
    • pp.323-328
    • /
    • 2021
  • Periodontal diseases have been reported to have a multidirectional association with metabolic disorders. We sought to investigate the correlation between periodontitis and diabetes or fatty liver disease using HFD-fed obese mice inoculated with P. gingivalis. Body weight, alveolar bone loss, serological biochemistry, and glucose level were determined to evaluate the pathophysiology of periodontitis and diabetes. For the evaluation of fatty liver disease, hepatic nonalcoholic steatohepatitis (NASH) was assessed by scoring steatosis, inflammation, hepatocyte ballooning and the crucial signaling pathways involved in liver metabolism were analyzed. The C-reactive protein (CRP) level and NASH score in P. gingivalis-infected obese mice were significantly elevated. Particularly, the extensive lobular inflammation was observed in the liver of obese mice infected with P. gingivalis. Moreover, the expression of metabolic regulatory factors, including peroxisome proliferator-activated receptor γ (Pparγ) and the fatty acid transporter Cd36, was up-regulated in the liver of P. gingivalis-infected obese mice. However, inoculation of P. gingivalis had no significant influence on glucose homeostasis, insulin resistance, and hepatic mTOR/AMPK signaling. In conclusion, our results indicate that P. gingivalis can induce the progression of fatty liver disease in HFD-fed mice through the upregulation of CD36-PPARγ axis.

경련을 동반한 신생아 부신백질이영양증 (Neonatal Adrenoleukodystrophy Presenting with Neonatal Seizure)

  • 신영림;유한욱
    • 대한유전성대사질환학회지
    • /
    • 제2권1호
    • /
    • pp.15-19
    • /
    • 2002
  • Disorders resulting from defects in peroxisomal biogenesis include Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease. The three diseases are now considered as a continuum of clinical features. Neonatal adrenoleukodystrophy is intermediate between Zellweger syndrome and infantile Refsum disease in severity, and is characterized by profound hypotonia, intractable seizures and premature death. We report a cases of neonatal adrenoleukodystrophy presenting with neonatal seizure and hypotonia. At the age of 43 months, she had clinical evidence of adrenal insufficiency with skin hyperpigmentation and electrolyte imbalance. She was diagnosed having neonatal adrenoleukodystrophy based on abnormally high levels of plasma very long-chain fatty acids, pipecolic acid and phytanic acid.

  • PDF

Renal replacement therapy in neonates with an inborn error of metabolism

  • Cho, Heeyeon
    • Clinical and Experimental Pediatrics
    • /
    • 제62권2호
    • /
    • pp.43-47
    • /
    • 2019
  • Hyperammonemia can be caused by several genetic inborn errors of metabolism including urea cycle defects, organic acidemias, fatty acid oxidation defects, and certain disorders of amino acid metabolism. High levels of ammonia are extremely neurotoxic, leading to astrocyte swelling, brain edema, coma, severe disability, and even death. Thus, emergency treatment for hyperammonemia must be initiated before a precise diagnosis is established. In neonates with hyperammonemia caused by an inborn error of metabolism, a few studies have suggested that peritoneal dialysis, intermittent hemodialysis, and continuous renal replacement therapy (RRT) are effective modalities for decreasing the plasma level of ammonia. In this review, we discuss the current literature related to the use of RRT for treating neonates with hyperammonemia caused by an inborn error of metabolism, including optimal prescriptions, prognosis, and outcomes. We also review the literature on new technologies and instrumentation for RRT in neonates.

Bioactive Lipids and Their Derivatives in Biomedical Applications

  • Park, Jinwon;Choi, Jaehyun;Kim, Dae-Duk;Lee, Seunghee;Lee, Bongjin;Lee, Yunhee;Kim, Sanghee;Kwon, Sungwon;Noh, Minsoo;Lee, Mi-Ock;Le, Quoc-Viet;Oh, Yu-Kyoung
    • Biomolecules & Therapeutics
    • /
    • 제29권5호
    • /
    • pp.465-482
    • /
    • 2021
  • Lipids, which along with carbohydrates and proteins are among the most important nutrients for the living organism, have a variety of biological functions that can be applied widely in biomedicine. A fatty acid, the most fundamental biological lipid, may be classified by length of its aliphatic chain, and the short-, medium-, and long-chain fatty acids and each have distinct biological activities with therapeutic relevance. For example, short-chain fatty acids have immune regulatory activities and could be useful against autoimmune disease; medium-chain fatty acids generate ketogenic metabolites and may be used to control seizure; and some metabolites oxidized from long-chain fatty acids could be used to treat metabolic disorders. Glycerolipids play important roles in pathological environments, such as those of cancers or metabolic disorders, and thus are regarded as a potential therapeutic target. Phospholipids represent the main building unit of the plasma membrane of cells, and play key roles in cellular signaling. Due to their physical properties, glycerophospholipids are frequently used as pharmaceutical ingredients, in addition to being potential novel drug targets for treating disease. Sphingolipids, which comprise another component of the plasma membrane, have their own distinct biological functions and have been investigated in nanotechnological applications such as drug delivery systems. Saccharolipids, which are derived from bacteria, have endotoxin effects that stimulate the immune system. Chemically modified saccharolipids might be useful for cancer immunotherapy or as vaccine adjuvants. This review will address the important biological function of several key lipids and offer critical insights into their potential therapeutic applications.

사립체 질환: 새로운 위대한 모방자가 될 것인가? (Mitochondrial Disease: Will it become a New Great Imitator?)

  • 김영한;안석민;서영준;윤종형;배은주;이홍진
    • 대한유전성대사질환학회지
    • /
    • 제16권3호
    • /
    • pp.123-134
    • /
    • 2016
  • Mitochondrial disease is a group of disorders caused by dysfunctional mitochondria, the organelles that generate energy for the cell. Diagnosis of mitochondrial disease is difficult, subtle, and has many problems. It is more likely to miss the diagnosis of mitochondrial disease, especially in borderline cases where the symptoms of the disease are not severe. In this regard, urine organic acid analysis is noninvasive and can increase the sensitivity and specificity through repeated load test with few changes according to the specimen. And, It is considered to be suitable as a screening test for mitochondrial diseases because it has a great advantage of distinguishing from organic aciduria, urea cycle disorder and fatty acid oxidation disorder which may have similar symptoms. The purpose of this study was to investigate the clinical features and age distribution of mitochondrial diseases diagnosed by organic acid analysis and to establish the policy of diagnosis and treatment based on this study.

  • PDF

Down-Regulation of Adipogenesis and Hyperglycemia in Diet-Induced Obesity Mouse Model by Aloe QDM

  • Kong, Hyun-Seok;Lee, Sung-Won;Shin, Seul-Mee;Kwon, Jeung-Hak;Jo, Tae-Hyung;Shin, Eun-Ju;Shim, Kyu-Suk;Park, Young-In;Lee, Chong-Kil;Kim, Kyung-Jae
    • Biomolecules & Therapeutics
    • /
    • 제18권3호
    • /
    • pp.336-342
    • /
    • 2010
  • Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated the hypoglycemic and hypolipidemic effects of aloe formula in high fat diet (HFD)-fed C57BL/6N mice. Male mice fed HFD for 28 weeks received a supplement of aloe formula, PAG, ALS, Aloe QDM, and an Aloe QDM complex for a further 8 weeks and were then compared with regular diet fed mice. After the experimental period, the blood glucose levels of the Aloe QDM complex-and PGZ-supplemented mice were significantly lower than those of the HFD-fed mice. Aloe formula, especially the Aloe QDM complex, and the PGZ treatment group profoundly affected the IPGTT and HOMA-IR. Immunochemistry was done for the morphological observation and the resulting sizes of adipocytes around the epididymis were significantly decreased when comparing the aloe formula-treated and HFD-fed groups. Further, aloe formula decreased mRNA expression of fatty acid synthesis enzymes and led to reduced hepatic steatosis in both liver and WAT. These results suggest that supplementation of Aloe QDM complex in the HFD-fed mice improved insulin resistance by lowering blood glucose levels and reducing adipocytes. Our data suggest that dietary aloe formula reduces obesity-induced glucose tolerance by suppressing fatty acid synthesis in the WAT and liver, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D.

칼로리 제한에 노화과정의 조절 (Modulation of the Aging Process by Food Restriction)

  • 최진호
    • 한국식품영양과학회지
    • /
    • 제20권2호
    • /
    • pp.187-196
    • /
    • 1991
  • Aging is the progressive accumulation of changes with time associated with responsible for the ever-increasing susceptibility to disease and death which accompanies advancing age. Lipid peroxides easily produced in the membrane system by the chain reaction of free radicals which occurred from various environmental factors. The amount of lipid peroxides produced in biological system increased with aging process, and lipid peroxidation damages involved in aging process and pathological disorders. Although lipid peroxides have such deleterious effects on the organisms, there are numerous substances and mechanisms which prevent the reaction of peroxide formation and protect the subject from its toxicity. This review provides an overview of how does lipid peroxidation of unsaturated lipids take place by free radical, and what is the intervention of lipid peroxides in pathogenesis of some human diseases, and also how does food restriction influences the aging process and various pathological disorders. The major focus of this paper is to review the evidence indicating that food restriction retards the aging process, and possible mechanisms of its actions. Therefore, it discussed the effects of age and food restriction on life-span, membrane yield, lipid peroxidation, fatty acid composition and peroxidizability, cholesterol and triglyceride levels, prostaglasndin and thromboxane synthesis, which may be concerned with blood flow, membrane fluidity, homeostasis and glomerular filtration rate in living body.

  • PDF