• Title/Summary/Keyword: Fatique crack

Search Result 13, Processing Time 0.016 seconds

Fatigue Crack Growth of Welded Joints for the Rail of Railroad (철도궤조(鐵道軌條)의 용접연결부(鎔接連結部)에 대한 피로균열성장(疲勞龜裂成長))

  • Chang, Dong Il;Bak, Yong Gul;Kyung, Kab Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.75-86
    • /
    • 1986
  • The welded joint of the rail of railroad had shown the complicated behaviour of fatigue crack growth due to the effect of low toughness, residual stress, welding stress and strain etc. resulting from welding. Also, the welding connection has been necessary as making longer the rail, thus fatique fracture has often occurred at welded joints. From above, in this paper, faigue test was done at base metal, gas pressure and thermit welded joints to give the basic data to construct S-N diagrams. From this, it was known that the base metal was better than welded joint and gas pressure better than thermit welded joints in the resistance against the behaviour of fatigue crack growth. And it was also found that it is very dangerous to control fracture only by the method of material mechanics.

  • PDF

Effect of Ni and Mo Addition on Fatique Property in 12Cr Steel (12Cr강의 피로특성에 미치는 Ni+Mo 첨가의 영향)

  • Lee, Jin-Kyung;Bae, Dong-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.435-441
    • /
    • 2021
  • This research was performed to study the effect of the Ni + Mo addition on the fatigue properties in 12Cr steel. After heat treatment of 12Cr steel and 12Cr-Ni-Mo steel, tensile tests, impact tests, hardness tests, and rotary bending fatigue tests were performed, respectively. The fatigue fracture surface was observed and analyzed using SEM and EDS. The fatigue limit of 12Cr steel was 554 MPa, which was 49 MPa higher than 505 MPa of 12Cr-Ni-Mo steel. Striations, which are the shape of the typical fatigue fracture surface, were observed at the fracture surface near the starting point of fatigue fracture in the 12Cr steel and 12Cr-Ni-Mo steel. However, unlike the case of 12Cr steel, 12Cr-Ni-Mo steel also had a mixed fracture surface with the fatigue and the ductile fracture surface. When brittle non-metallic inclusions exist near the starting point of fatigue failure, the crack propagation was further promoted and the fatigue life was drastically reduced.

A Study on the Fatigue Strength of the Welded Joints in Steel Structures(II) (강구조물(鋼構造物)의 용접연결부(鎔接連結部)의 피로강도(疲勞强度)에 관한 연구(研究)(II))

  • Park, Je Seon;Chung, Yeong Wha;Chang, Dong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 1986
  • Welded connectors of the cover plates, the transverse stiffeners of the plate girders, and the gusset plates of the plates girders or box girders, were selected as studying objects. A simplified method of drawing the S-N curves in these welded joints by a computer program without the direct fatigue tests was established. The plots on the S-N curve using the values from the practical fatigue tests were compared with the results from the method of the computer programming. The results of these studies are as follows. It appeared that the fatigue life by calculation method was a little less than the practical fatigue life from the actual tests. The latter values included both life $N_c$ of occurrence of initial crack $a_i$ and the life $N_p$ of propagation of critical crack. On the other hand, the former values included only the life $N_p$. Therefore, these results should be considered as justifiable ones. Since the difference between the two results was not significant, the results by calculation method should be in the conservation side when the safety of the structures was considered. Consequently, the results by calculation method should be applicable to the fracture fatigue design of structure. For reference, the same fatigue tests were performed with the specimens of 3 pieces in each case made of the low-strength steel, SS 41. The results went unexpected showing that the fatigue strength was lower in the case of low-strength steel. That is, in the case of the cover plate, the fatigue strength became slowly higher than the case of high-strength steel, SWS 50. That was observed when the maximum testing stress was higher than $14kg/mm^2$. In addition, in the case of the transverse stiffener, the fatique strength became rapidly higher than the case of SWS 50. That was observed when the maximum testing stress was lower than $31kg/mm^2$. It was thought that more such fatigue tests should be performed for more reliable results.

  • PDF