• Title/Summary/Keyword: Fatigue system

Search Result 1,620, Processing Time 0.033 seconds

Material Characteristics of Dental Implant System with In-Vitro Mastication Loading

  • Jeong, Tae-Gon;Jeong, Yong-Hun;Lee, Su-Won;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;Gang, Gwan-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.72-72
    • /
    • 2018
  • A dynamic fatigue characteristic of dental implant system has been evaluated with applying single axial compressive shear loading based on the ISO 14801 standard. For the advanced dynamic fatigue test, multi-directional force and motion needed to be accompanied for more information of mechanical properties as based on mastication in oral environment. In this study, we have prepared loading and motion protocol for the multi-directional fatigue test of dental implant system with single (Apical/Occlusal; AO), and additional mastication motion (Lingual/Facial; LF, Mesial/Distal; MD). As following the prepared protocol (with modification of ISO 14801), fatigue test was conducted to verify the worst case results for the development of highly stabilized dental implant system. Mechanical testing was performed using an universal testing machine (MTS Bionix 858, MN, USA) for static compression and single directional loading fatigue, while the multi-directional loading was performed with joint simulator (ADL-Force 5, MA, USA) under load control. Basically, all mechanical test was performed according to the ISO 14801:2016 standard. Static compression test was performed to identify the maximum fracture force with loading speed of 1.0 mm/min. A dynamic fatigue test was performed with 40 % value of maximum fracture force and 5 Hz loading frequency. A single directional fatigue test was performed with only apical/occlusal (AO) force application, while multi directional fatigue tests were applied $2^{\circ}$ of facial/lingual (FL) or mesial/distal (MD) movement. Fatigue failure cycles were entirely different between applying single-directional loading and multi-directional loading. As a comparison of these loading factor, the failure cycle was around 5 times lower than single-directional loading while applied multi-directional loading. Also, the displacement change with accumulated multi-directional fatigue cycles was higher than that of single directional cycles.

  • PDF

Fatigue Strength Analysis of Propulsion Shafting System with Two Stroke Low Speed Diesel Engine by Torsional Vibration in Frequency Domain (주파수 영역에서 비틀림진동에 의한 저속 2행정 디젤엔진을 갖는 추진축계의 피로강도 해석)

  • Kim, S.H.;Lee, D.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.416-422
    • /
    • 2007
  • Prime movers in most large merchant ships adapt two stroke low speed diesel engine which has higher efficiency, mobility and durability. However, severe torsional vibration in these diesel engines may be induced by higher fluctuation of combustion pressures. Consequently, it may lead sometimes to propulsion shafting failure due to the accumulated fatigue stresses. Shaft fatigue strength analysis had been done traditionally in time domain but this method is complicated and difficult in analysing bi-modal vibration system such as the case of cylinder misfiring condition. In this paper authors introduce an assessment method of fatigue strength estimation for propulsion shafting system with two stroke low speed diesel engine in the frequency domain.

  • PDF

Development of Material Properties Measurement and Fatigue Life Evaluation System (재료물성치 측정 및 피로수명평가 시스템의 개발)

  • 박종주;서상민;최용식;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1465-1473
    • /
    • 1994
  • This paper describes the development strategy and contents of a fatigue life evaluation system, FLEVA. The system is composed of 4 parts; material properties, load histories, cycle counting and life prediction. The cycle counting is based on the rain-flow counting method and peak counting method, and the life prediction is performed based on the linear damage rule. Material properties(static, fatigue) are also provided as a database obtained by a computer aided test system. Case study is performed to verify the developed program.

Fatigue strength evaluation of a bogie frame for standard electric multiple unit(I). (표준전동차 대차틀 피로강도평가(I))

  • 박기준;이호용;이관섭;김원경
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.3
    • /
    • pp.170-176
    • /
    • 2000
  • Nowadays, the vehicle structure weight of urban transit system has been reduced in order to save energy and materials. However, this light weighted vehicle structure is very important to verify the fatigue strength at the development stage. Bogie system consists of bogie frame, suspensions, wheel-sets, braking system and transmission system. Among these components, the bogie frame is most significant component subjected to the whole vehicle and passenger loads. In this study, the bogie frame for the standard EMU power car is evaluated to the static and fatigue strength. And, the evaluation method is used the JIS E4207 specification throughout the FEM analysis and static load test. The static and fatigue test results for the standard EMU bogie frame of power car has been appeared very safety and stable for the design load conditions.

  • PDF

A Study on the Effect of Stress Concentration Factor Determined by 3D-ESPI System on the Fatigue Life (3D-ESPI 시스템을 이용하여 결정된 응력집중계수가 피로수명에 미치는 영향에 관한 연구)

  • 김경수;심천식
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.46-51
    • /
    • 2002
  • Fatigue life estimation by the theoretical stress concentration factors are, in general, considerably different from test results. And in calculating stress concentration factor, it is very difficult to consider actual geometry and material property which are the notch shapes, imperfections or defects of materials such as porosities inclusions and casting defects, etc. Therefore, the paper deals with the experimental method to find out the more exact stress concentration factors by measuring the strain distributions on each specimen by 3D-ESPI(Electronic Speckle Pattern Interferometry) System. Then the fatigue lives are compared between theoretical calculations using stress concentration factors determined by 3D-ESPI system and fatigue test results.

Online game fatigue system comparative analysis between China and Korea (한중 온라인 게임 중독 방지 시스템 비교 분석)

  • Yuan, Fang;Lee, Dong-Lyeor
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.455-460
    • /
    • 2014
  • In this paper, in order to improve the online game fatigue system for the purpose of use in South Korea and China's online game fatigue system analysis and comparison and find the problem and make improvements..Poisoning Prevention Youth Network game system, although many of the practical implementation of the research is very inadequate.So here we do it by comparing South Korea and China's online game fatigue system, promote physical fatigue perfect game addicted youth to further resolve the issue.

Comparison of Fatigue Damage of Linear Elastic System with Respect to Vibration Input Conditions (입력가진 조건에 따른 선형 시스템의 피로손상도 비교 평가)

  • Heo, Yun Seok;Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.6
    • /
    • pp.437-443
    • /
    • 2014
  • Vibration testing is conducted for evaluate the fatigue resistance of responsible system over excitation situations and two kinds of vibration profiles, harmonic or random, are widely used in engineering fields. Harmonic excitation profile is adequate for the rotating machinery that is primarily exposed to the orderly excited force subjected for a rotating speed; Random profile is suitable for the non-stationary vibration input, that is a ground excitation for example. Recently, the sine on random(SOR) testing method was sometimes considered to represent the real excitation conditions since the measured response signals of a target system, expecially for moving mobility, shows usually a mixture of them. So, it is important to understand the accumulated fatigue damage over different excitation patterns, harmonic and/or random, to determine the efficient vibration profile of a target system. A uniaxial vibration testing with a notched simple beam was introduced to evaluate the fatigue damage for different excitation profiles and the best choice of vibration profile was concluded from those comparison of calculated fatigue damages.

Comparison of fatigue damage of linear elastic system with respect to vibration input conditions (입력가진 조건에 따른 선형 시스템의 피로손상도 비교 평가)

  • Kim, Chan-Jung;Heo, Yun Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.340-345
    • /
    • 2014
  • Vibration testing is conducted for evaluate the fatigue resistance of responsible system over excitation situations and two kinds of vibration profiles, harmonic or random, are widely used in engineering fields. Harmonic excitation profile is adequate for the rotating machinery that is primarily exposed to the orderly excited force subjected for a rotating speed; Random profile is suitable for the non-stationary vibration input, that is a ground excitation for example. Recently, the sine on random (SOR) testing method was sometimes considered to represent the real excitation conditions since the measured response signals of a target system, expecially for moving mobility, shows usually a mixture of them. So, it is important to understand the accumulated fatigue damage over different excitation patterns, harmonic and/or random, to determine the efficient vibration profile of a target system. A uniaxial vibration testing with a notched simple beam was introduced to evaluate the fatigue damage for different excitation profiles and the best choice of vibration profile was concluded from those comparison of calculated fatigue damages.

  • PDF

The Structural and Fatigue Analysis for the Bogie Frame of the Rubber Wheel AGT (고무차륜형 AGT 주행장치의 구조 및 피로해석)

  • 유형선;권혁수;윤성호
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.2
    • /
    • pp.31-38
    • /
    • 1999
  • Two representative types of the AGT (Automated Guideway Transit) system, which are bogie and steering types, are available for the side-guided system. Each system primarily consists of the bogie frame, suspensions, wheelsets and axles, braking system and transmission system. Among these components, the bogie frame is one of the most significant components subjected to the whole vehicle and passenger loads. This paper describes structural analyses and associated fatigue analyses for each bogie frame depending on the various loading conditions on a basis of the railway vehicle code UIC 515-4. Subsequently, comparisons are made between those two types to estimate which type is more reliable in terms of strength and fatigue. It is observed that the bogie type is a little advantageous over the steering one from the strength analysis. However, the two types are found to be in a reliable range of fatigue even though a realistic fatigue load case is further carried out. In addition, an optimal size of thickness is suggested for designs of the bogie frame.

  • PDF

An Expert System for Estimation of Fatigue Properties of Metallic Materials using Simple Tensile Data (금속재료의 피로특성 추정을 위한 전문가시스템)

  • Jeon, Woo-Soo;Song, Ji-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.195-200
    • /
    • 2003
  • An expert system for estimation of fatigue properties from simple tensile data of material is developed, considering nearly all important estimation methods proposed so far, i.e., 7 estimation methods. The expert system is developed using an expert system shell, UNIK, and the knowledge base is constructed with production rules and frames. Forward chaining is employed as a reasoning method. The expert system has three major functions including the function to update the knowledge base. The performance of the expert system is tested using the 54 ${\sigma}-N$ curves consisting of 381 ${\sigma}-N$ data points obtained for 22 materials. It is found that the expert system developed has excellent performance especially for steel materials, and reasonably good for titanium alloys.

  • PDF