• Title/Summary/Keyword: Fatigue system

Search Result 1,620, Processing Time 0.027 seconds

High Temperature Fatigue Strength of the Welded Joint in Exhaust System (배기계 용접이음의 고온피로강도)

  • Chu, Seok-Jae;Lee, Han-Yong;NamKoong, Kyu-Wan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.1028-1034
    • /
    • 2008
  • The exhaust systems are usually subjected to vibration or shock at high temperatures. The high temperature fatigue tests of the exhaust systems are rarely performed in domestic industries due to limited number of test facility and high test costs. In this paper, the high temperature fatigue test of some part of the exhaust system, not the whole system, is carried out. The resonator located at the central range is heated in the cylindrical electric furnace and the alternating load is applied on the end of the pipe welded to the resonator. The high temperature fatigue strength of the welded joint is obtained. The location of the fatigue crack is different to that in room temperature.

Life Fatigue Prediction of an Accumulator Composed of Bladder and Housing (블래더와 하우징으로 구성된 축압기의 수명피로예측)

  • Kim, Daeyu;Lee, Geonhee;Hur, Jangwook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.58-63
    • /
    • 2018
  • Recently in weapon systems development, the importance of reliability has been emphasized due to the increase in complexity and the rapid development of key components and components. Accordingly, the importance of lifespan testing is increased. However, lifespan testing to verify the reliability of a system is costly and takes a lot of time. Therefore in this paper, it was demonstrated that the most critical item of a bladder type accumulator is the bladder. Fatigue life is sensitive to temperature and pressure, with temperature having more impact. The fatigue life of the bladder was estimated to be 18,140 hr through fatigue analysis, which satisfies the required life expectancy of 10,000 hr.

A Study on Fatigue Life of Weld Method for Excavator Bucket (굴삭기 버킷 용접부의 피로수명에 관한 연구)

  • Park, K.D.;Jung, J.W.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.102-109
    • /
    • 2005
  • An attachment part of the construction equipment frequently claimed from the crack occurrence that takes especially at the bucket. therefore we execute the fatigue examination and changes the welding method at the same materials. we executed a fatigue crack propagation experiment and got the conclusions at the normal temperature and Frequency 10Hz. We carried out butt welding for structure steel of SM490A and make three kinds of specimen of different weld method each. The fatigue limit of CASE 1 was determined to the low than CASE 2, CASE 3. the CASE 2 putting the interval of the 2mm creates back plate and make fatigue limit to high. Bead shapes and weld surfaces shape influence on fatigue life of materials. Specially, the crack growth becomes starting point that gap of back-plate and boundary surface of bead. It is confirmed by fracture showing on this study.

  • PDF

The Vibration Characteristic and Fatigue Life Estimation of a Small-scaled Hingeless Hub System with Composite Rectangular Blades (복합재료 기준형 블레이드를 장착한 축소 힌지없는 허브시스템의 진동특성과 피로수명 예측)

  • Song, Keun-Woong;Kim, Jun-Ho;Kim, Duck-Kwan;Joo, Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.310-315
    • /
    • 2003
  • This paper described that rotating test and fatigue test of a small-scale hingeless hub system with composite rectangular blades. Generally Rotating stability and fatigue test technique is one of Key-technology on test and evaluation for helicopter rotor system Rotating test of hingeless rotor system was achieved by means of rotor vibration characteristic and aeroelastic stability test GSRTS, equipped with hydraulic actuator and 6-component rotating balance was used to test hingeless rotor system especially for an observation of blade motion including flawing, lagging and feathering. Rotating test was done in hover and forward flight condition. Small-scaled blade fatigue test condition was determined by blade load analysis with the reference table of composite materials(S-N curve). Fatigue test bench was developed for the estimation of blade fatigue life, and tested its characteristic.

  • PDF

Implementation of Fatigue Identification System using C4.5 Algorithm (C4.5 알고리즘을 이용한 피로도 식별 시스템 구현)

  • Jin, You Zhen;Lee, Deok-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.21-26
    • /
    • 2019
  • This paper proposes a fatigue recognition method using the C4.5 algorithm. Based on domestic and international studies on fatigue evaluation, we have completed the fatigue self - assessment scale in combination with lifestyle and cultural characteristics of Chinese people. The scales used in the text were applied to 58 sub items and were used to assess the type and extent of fatigue. These items fall into four categories that measure physical fatigue, mental fatigue, personal habits, and fatigue outcomes. The purpose of this study is to analyze the leading causes of fatigue formation and to recognize the degree of fatigue, thereby increasing the personal interest in fatigue and reducing the risk of cerebrovascular disease due to excessive fatigue. The recognition rate of the fatigue recognition system using the C4.5 algorithm was 85% on average, confirming the usefulness of this proposal.

Fatigue Crack Propagation Life of Partially Penetrated Butt Welds in High Strength Steel (고장력 강판 부분용입 맞대기 용접부의 피로균열진전수명 평가)

  • Han, Seung-Ho;Shin, Byung-Chun;Lee, Woong;Choi, Jeon-Ho
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2003
  • Fatigue behaviour of partially penetrated butt-welded joints in high strength steel plates, in which crack-like structural defect, i.e. lack of penetration(LOP), is inevitably introduced during welding processes, was investigated. Fatigue lives of two types of welded joints, namely X-grooved and K-grooved joints, were experimentally determined first. Observed fatigue crack propagation behaviours of the partially penetrated butt-welds were interpreted through considering 3-dimensional semi-elliptical crack shape in front of the LOP. Based on such interpretation, a fracture mechanical method to estimate stress intensity factors at the crack tip was proposed. Since the fatigue lift of the partially penetrated butt-welds was strongly influenced by the ratio of size of the LOP to thickness, D/t, the D/t was used as a main parameter to calculate the fatigue lift by using the proposed method. Comparison of the fatigue lift obtained experimentally and analytically agreed well with each other. Hence it is suggested that the method used in this work to predict fatigue lift of the partially penetrated butt-welds can be applied to real cases with improved lift-prediction capability.

Current Status on the Development and Application of Fatigue Monitoring System for Nuclear Power Plants (원전 피로 감시 시스템 개발 및 적용 현황)

  • Boo, Myung Hwan;Lee, Kyoung Soo;Oh, Chang Kyun;Kim, Hyun Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.1-18
    • /
    • 2017
  • Metal fatigue is an important aging mechanism that material characteristics can be deteriorated when even a small load is applied repeatedly. An accurate fatigue evaluation is very important for component structural integrity and reliability. In the design stage of a nuclear power plant, the fatigue evaluations of the Class 1 components have to be performed. However, operating experience shows that the design evaluation can be very conservative due to conservatism in the transient severity and number of occurrence. Therefore, the fatigue monitoring system has been considered as a practical mean to ensure safe operation of the nuclear power plants. The fatigue monitoring system can quantify accumulated fatigue damage up to date for various plant conditions. The purpose of this paper is to describe the fatigue monitoring procedure and to introduce the fatigue monitoring program developed by the authors. The feasibility of the fatigue monitoring program is demonstrated by comparing with the actual operating data and finite element analysis results.

A Study on Fatigue Characteristic of Connecting Rod Material for Automobile (자동차용 커넥팅로드 소재의 피로특성에 관한 연구)

  • Kim, Hyun-Soo;Park, In-Duck;Kim, Chang-Hoon;Kim, Tae-Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.3
    • /
    • pp.163-169
    • /
    • 2006
  • Fretting is a kind of surface degradation mechanism observed in mechanical components and structures. The fretting damage decreases into 50-70% of the plain fatigue strength. The connecting rod for automobile has been used in special environments and various loading conditions. Failure of connecting rod in automotive engine may cause catastrophic situation. In this study, we investigated the fatigue characteristic of connecting rod material for an automobile. Fatigue life is defined as the number of cyclic stress to failure by regular cyclic stress. Fatigue life of C70S6 specimen was obtained from 134,000 to 147,000 cycles. Fatigue limit showed 432MPa by normal fatigue test. The other hands, it was 96MPa in the case of fretting fatigue test. It was extremely lower than that of a normal fatigue test. From observation of fracture surface, it was confirmed that the fatigue crack was initiated at the boundary of a specimen and bridge pad.

Study on the Effects of System Parameters on the High Cycle Fatigue Life Based on Structural Dynamic.analysis of a Turbine Blade System (터빈 블레이드의 구조동역학해석에 근거한 시스템 인자들의 고 사이클 피로수명에 대한 영향도분석)

  • Kwon, Sung-Hun;Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.89-94
    • /
    • 2006
  • In this paper, the effects of the system parameters on the high cycle fatigue life based on structural dynamic analysis of a turbine blade are investigated. Conventional studies have forcused on the fatigue life of turbine blades with specific system parameters. However, each parameter has statistical deviation because of inhomogeneity of material property, tolerance, and operating conditions. Therefore a methodology that estimates the effects of system parameter on the fatigue lift deviation is demonstrated.

  • PDF

Reliability Engineering Approach to Fatigue Crack Growth Rate Under Random Loading Using DC Eletrical Potential Method (직류전위차법을 이용한 랜덤하중하의 피로균열 진전율에 대한 신뢰성 공학적 연구)

  • Bae, Sung-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.473-480
    • /
    • 1996
  • Automatic fatigue crack length measuring system using DC electrical potential method and the system control program for automatic fatigue testing under random load condition were made in this study. And using these system and control program, fatigue tests were executed under constant and random load condition. As the result, the propagation of crack in random loading can be represented Paris equaiton and log normal probability function. But constant and random load test show different crack propagation properties.