• Title/Summary/Keyword: Fatigue strength curve

Search Result 184, Processing Time 0.025 seconds

A Study on the Fatigue Strength of Lap Weld of LNG Tank (LNG탱크 겹침용접부의 피로강도에 관한 연구)

  • Kim, Jong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.29-35
    • /
    • 1999
  • At the design of Mark III membrane type LNG tank, an analytical and experimental approach on the fatigue strengths of membrane and its welds are very important in order to assist designers and surveyors. In this study, fatigue tests of lap weld of Mark III membrane type LNG tank were carried out and cumulative damage factor was calculated in order to estimate the fatigue life by probability density function and rule methods. It contained the following tests and reviews : 1) The fatigue tests of lap weld of stainless steel according to statistical testing method recommended by JSME, 2)Preparation of S-N curve for lap welds considering the statistical properties of the results of fatigue tests. 3) Procedure for estimating the initiation life of fatigue crack of lap welds under variable loads by the rule lf classification society and probability density function, 4) Guideline for inspection of lap welds fo membrane type LNG tank.

  • PDF

A Study on the Fatigue Fracture Behavior in Butt Welded Joints of Steel Structures (강구조물(鋼構造物) 맞대기 용접연결부(鎔接連結部)의 피로파괴거동(疲勞破壞擧動)에 관한 연구(硏究))

  • Park, Je Seon;Chung, Yeong Wha;Kim, Jeong Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.53-62
    • /
    • 1986
  • For the research on the fatigue fracture behavior in the welded joints of steel structures, base metal specimens and welded ones were selected, and the direct fatigue tests were carried out. Thereafter, fatigue-life (S-N) curves, plastic strain-number of cycles (${\varepsilon}_p$-N) curve, the extrapolated fatigue-life (${\varepsilon}_p$-$N_c$) curve, and da/dN-${\Delta}K$ curves were plotted. By these results the followings were obtained. It was shown that the ratio of fatigue strength at $2{\times}10^6$ cycles of the welded specimen to that of the base metal one was 0.6, and that 0.72 for the base metal and 0.65 for the welded one were the ratio of fatigue strength at $2{\times}10^6$ cycles to yielding stress. The S-N curve for the welded specimen was separated into two sections, the low gradient section and the steep section. As this result, it was shown that the more stress became to reduce, the more the reduction of fatigue strength became to be great. It was shown that fatigue strength at $2{\times}10^6$ cycles from this case was about 83 % of that from the S-N curve plotted with one section. It was thought that the reason was that weld flaw acted greatly on the fatigue strength within the low stress range. It was shown that at the instart of crack initiation plastic strain increased abrupt1y in the case of the welded specimen more than the case of the base metal specimen, and increased abruptly in the upper stress range in both cases. It was shown that the experimental constant ${\alpha}$, 0.42, in the base metal nearly accorded with Manson-Coffin's result, but this made a great difference with the case in the welded specimen. It was thought that it was due to the abrupt change of plastic strain and the influence of weld flaw.

  • PDF

RRR Behavior due to Fatigue Damage in NbTi Superconductor Cable (피로손상을 받은 NbTi초전도 선재의 RRR거동패동)

  • 신형섭;배영준;하동우;오상수
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • In order to investigate the effect of fatigue damage on the properties of RRR in this study. fatigue tests at room temperature and residual resistivity measurement tests at 12K were carried out using annealed 9 strand Cu-Ni/NbTi/Cu composite cables Through fatigue tests of NbTi composite cables. a conventional S-N curve could be obtained even though there existed a possibility of fretting among strands, From the resistivity measurement of a NbTi strand after fatigue test, it was found that the RRR of xii·gin strand for annealed cables was 3 times more than that for as-received one. With increasing of fatigue cycles at a sress amplitude level. the RRR decreased. which was resulted from the accumulation of damage such as lattice defects and dislocation within the Cu stabilizer.

  • PDF

The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient (구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석)

  • 양성모;송준혁;강희용;노홍길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.

An Experimental Study of fatigue Strength of Welded Structures Using Structural Stress and Hot Spot Stress (구조응력 및 핫스팟응력을 이용한 피로수명 평가에 관한 실험적 연구)

  • Kang, Sung-Won;Kim, Myung-Hyn;Kim, Seok-Hun;Ha, Woo-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.129-135
    • /
    • 2005
  • At present, fatigue design of welded structures is primarily based on a nominal stress or hot spot stress approach with a series of classified weld S-N curves. Although well accepted by major industries, the nominal stress based fatigue design approach is cumbersome in terms of securing a series of S-N curves corresponding to each class of joint types and loading modes. The hot spot stress based fatigue design has a difficulty of finding a proper stress through the global model, the midium size model, and the detail model of ship structure. Also, it is difficult to link proper displacements within three different mesh size models. Recently, the structural stress is proposed as a mesh-size insensitive structural stress definition that gives a stress state at weld toe with relatively large mesh size. However, this method requires an experimental validation in obtaining the fatigue strength of weldments. Therefore, in this study, a series of experiment is performed for various sizes of weldments.

Fatigue Analysis for Fiber Right Angle Direction of FRP Deck (FRP 바닥판의 섬유직각 방향에 대한 피로해석)

  • Kim, Doo-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.81-86
    • /
    • 2014
  • Composite materials have high specific stiffness, specific strength than existing concrete or steel materials. It has superior dynamic properties when utilizing advantages of material such as Non-corrosive, light weight, non-conducting and it has superior mold ability which can make variable shapes. Thus, in the construction, for using composite materials as construction materials, the study carried out static strength of fiber right angle direction and fatigue performance of FRP deck member. The study is going to deduct S-N curve by analyzing the results comparatively and estimate long-term durability. From now on, the study is going to provide interpretation of FRP member and basic data of design basis, furthermore providing foundation technique of composite materials' application of structural frame is the goal of this study.

A Study on Fatigue Behavior of Two-Span Fiber Reinforced Concrete Beam (강섬유 보강 철근콘크리트 2경간 연속보의 피로거동에 관한 연구)

  • Kwak, Kae-Hwan;Cho, Seon-Jeong;Seok, In-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.163-172
    • /
    • 2003
  • As concrete structures are getting larger, higher, longer, and specialized, it is more required to develop steel fiber concrete and apply to the real world. In this research, it is aimed to have fatigue strength examined, varying the steel fiber content by 0%, 0.75%, 1.00%, 1.25%, by experimental study of Two-spans Beam with Steel Fibrous with repeated loads. The ultimate load and the initial load of flexural cracking were measured by static test. In addition, the load versus strain relation, load versus strain relation, load versus deflection relation, crack pattern and fracture mode by increasing weight was observed. On the other hand, the crack propagation and the modes of fracture according to cycle number and the relation of cycle loading to deflection relation and strain relation was observed by fatigue test. As the result of fatigue test, Two-spans Beam without Steel Fibrous was failed at 60~70% of the static ultimate strength and it could be concluded that fatigue strength to two million cycle was around 67.2% by S-N curve. On the other hand, that with Steel Fibrous was failed at 65~85% of the static ultimate strength and it could be concluded fatigue strength to two million cycle around 71.7%.

Fatigue and Damage Tolerance Evaluation of Composite Helicopter Rotor Blades (복합재 헬리콥터 로터 블레이드의 피로 및 손상허용 평가 방안)

  • Kee, Young-Jung;Paek, Seung Kil
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.3
    • /
    • pp.41-46
    • /
    • 2014
  • Fatigue evaluations for the rotor blades of commercial or military rotorcraft have been carried out using the safe life concept since 1950s. Particularly, in the case of a rotor blade made of a composite material, a highly reliable fatigue life could be predicted by evaluation the cumulative damage using combination of fatigue life curve and load spectrum. However, there is a limit in adequately evaluating the strength reducing phenomena caused by damages or defects generated during the manufacturing process or impact damage induced by operational usages, using only the safe life concept. In this study, the fatigue evaluation process based on the damage tolerance concept is described and illustrated by means of successful application to substantiate the retirement time of composite rotor blades.

A Study on the Improvement of the Durability of Drive Plate in Automobiles by Shot Peening (쇼트피닝 가공에 의한 자동차용 Drive Plate의 내구성 향상)

  • Cheong Seongkyun;Lee Kookjin;Lee Dongsun;Lee Jaeheon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.191-196
    • /
    • 2005
  • The effects of shot peening on the fatigue strength of SK-5M steel is investigated by experiment. The shot peening process is investigated optimum peening condition by changing impeller speed and exposure time. Bending fatigue test is accomplished to investigate the effect of optimum peening condition on the fatigue characteristics. As exposure time is increased, fatigue life in high stress is increased in early stage, become the maximum from 60 to 100 seconds, and then is decreased. Observing fracture surface through SEM after fatigue test, we can see clear configuration of cracks and peening layer.

  • PDF

A Fracture Mechanics Study on the Fatigue Crack Propagation of the Pressure Vessel Pad Weldment (압력용기 패드부의 피로균열진전에 관한 파괴력학적 연구)

  • 차용훈;김하식
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.10-15
    • /
    • 1996
  • In studying the fatigue strength of fillet welded the section of pressure vessel pad, this study was to evaluate the effect of weld toe notch and to compare the results of numerical analysis with the results of fatigue experiments of fillet welded A5l6 grade 60 steel specimens. The fatigue life for the Bead welded specimen was about 1.4 times as much it as the 1Pad welded specimen. Also, The fatigue life for the 2Pad welded specimen was about 1.5 times as much it as the 1Pad welded specimen. In $da/dN-{\Delta}K$ curve, the fatigue crack growth rate for the 1Pad welded specimen appeared higher than that of the 2Pad welded specimen in the same initial region of ${\Delta}K$, had a similar Inclination In the stabled region.

  • PDF