• 제목/요약/키워드: Fatigue properties

검색결과 1,125건 처리시간 0.025초

유한요소법을 이용한 LSP 표면처리 공정의 잔류응력 예측 (Residual Stress Prediction in LSP Surface Treatment by Using FEM)

  • 방부운;손승길;김재민;조종두
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.767-772
    • /
    • 2009
  • Laser shock peening(LSP) is proving to be better surface treatment than conventional one such as shot peening. The LSP process has a compressive residual stress into a metal alloy and a significant improvement in fatigue life. Our research is focused on applying finite element method to the prediction of residual stress through the LSP processing in some LSP conditions such as pressure and spot size induced by laser. Two analysis methods are considered to calculating the compressive residual stress. But the explicit solution and the static one after partially explicit solving are almost same. In LSP, because of very high strain rate($10^6s^{-1}$), HEL(Hugoniot Elastic Limit) is the most important parameter in material behavior modeling. As the circular laser spot is considered, 2-D axisymmetric elements are used and the infinite elements are applied to boundaries for no reflection. The relations of material properties and the LSP are also important parts in this study.

유리기판위에 증착한 50% Pb-excess PZT박막의 전기적특성 (Electrical Properties of 50% Pb-excess PZT Thin Films Deposited on the Glass Substrates)

  • 정규원;박영;주필연;박기엽;송준태
    • 한국전기전자재료학회논문지
    • /
    • 제14권5호
    • /
    • pp.370-375
    • /
    • 2001
  • PZT thin films (3500${\AA}$) ahve been prepared onto Pt/Ti/corning glass (1737) substrates with a RF magnetron sputtering system using Pb$\sub$1.50/(Zr$\sub$0.52/,Ti$\sub$0.48)O$_3$ ceramic target. We used two-step annealing techniques, PZT thin films were grown at a 300$^{\circ}C$ substrate temperature and then subjected to an RTA treatment. In case of 500$^{\circ}C$ RTA temperature show pyrochlore phase. The formation of Perovskite phase started above 600$^{\circ}C$ and PZT thin films generated (101) preferred orientation. As the RTA time and temperature increased, crystallization of PZT films were enhanced. The PZT capacitors fabricated at 650$^{\circ}C$ for 10 minutes RTA treatment showed remanent polarization 30 ${\mu}$C/$\textrm{cm}^2$, saturation polarization 42${\mu}$C/$\textrm{cm}^2$, coercive field 110kV/cm, leakage current density 2.83x10$\^$-7/A/$\textrm{cm}^2$, remanent polarization were decreased by 30% after 10$\^$9/ cycles.

  • PDF

바닥건축재료의 충결하중에 대한 반응 (Impact-Response of Floor Construction Materials)

  • 장상식
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권2호
    • /
    • pp.83-87
    • /
    • 1995
  • Impact-bouncing height of steel balls dropped from 1m height on various floor materials were measured to evaluate impact-bouncing characteristics depending on floor materials and the effect of these properties on walkability and fatigue of humanbody. Stone and tile finished concrete floor showed the highest bouncing height of around 70%, and soil showed the lowest bouncing height of around 3%. The second highest bouncing height was about 40% which corresponded to terazo finished concrete floor and about twice as high as the bouncing height on concrete floor without finishing. The impact-bouncing height could be lowered to 15~20% by using gum tile on concrete floor. Steel showed similar bouncing height to concrete floor, and wood-based materials showed the second lowest bouncing height next to soil. Among wood-based materials, hardwood species having higher specific gravities showed relatively high bouncing height of 8~24%, softwood species having low specific gravities showed relatively lower bouncing height of 5~18%, and wood composites showed bouncing height of 8~18%. Among all the materials used in this study, wood-based floor materials corresponded to the bouncing height of 10~15% which is considered to be best for humanbody. Surface painting on wood-based materials increased the bouncing height, and the number of bouncing of steel balls after dropping from 1m height increased as the bouncing height increased.

  • PDF

Carbon/Epoxy 적층판의 저속충격손상에 따른 잔류강도 평가 (Evaluation of Residual Strength of Carbon/Epoxy Laminates Due to Low Velocity Impact Damage)

  • 강민성;최정훈;김상영;구재민;석창성
    • 한국정밀공학회지
    • /
    • 제27권2호
    • /
    • pp.102-108
    • /
    • 2010
  • Recently, carbon fiber reinforced plastic(CFRP) composite materials have been widely used in various fields of engineering because of its advanced properties. Also, CFRP composite materials offer new design flexibilities, corrosion and wear resistance, low thermal conductivity and increased fatigue life. However CFRP composite materials are susceptible to impact damage due to their lack of through-thickness reinforcement and it causes large drops in the load-carrying capacity of a structure. Therefore, the impact damage behavior and subsequently load-carrying capacity of impacted composite materials deserve careful investigation. In this study, the residual strength and impact characteristics of plain-woven CFRP composites with impact damage are investigated under axial tensile test. By using obtained residual strength and Tan-Cheng failure criterion, residual strength of CFRP laminate with arbitrary fiber angle were evaluated.

計裝化 샬피 시험법 에 의한 알루미늄 합금 용접부 의 동적파괴 인성 (The dynamic fracture toughness of aluminum alloy weld zone by instrumented charpy test)

  • 문경철;강락원;이준희
    • Journal of Welding and Joining
    • /
    • 제3권2호
    • /
    • pp.42-51
    • /
    • 1985
  • The dynamic fracture toughness, fracture characteristics, impact tension and tensile properties of Al-Mg-Si T5 alloy and Al-Zn-Mg T6 alloy respectively welded with filler metal of Alcan 4043 were investigated. The dynamic fracture toughness values were obtained rapidly and simply for the specimen of small size by using instrumented Chirpy impact testing machine. the testing temperatures of the specimen were a range of room temperature and-196.deg. C. The results obtained in this experiment are summarized as follows. With decreasing the testing temperatures, dynamic tensile stress and fracture load were increased, on the other hand the deflection and impact value showed decreasing tendency in order of base metal>HAZ>weld. Changes of total absorbed energy were more influenced by the crack propagation energy than the crack initiation energy. At the low temperatures, the unstable rapid fracture representing the crack propagation appeared for the specimens of Charpy press side notched in Al-Zn-Mg alloy, but it was difficult to obtain the unstable rapid fracture in Al-Mg-Si alloy. Because of the development of plastic zone at the notch root, it was difficult to obtain thevalid $K_{1d}$ value in Al-Mg-Si alloy. Therefore the fatigue cracked specimens were effective in both Al-Mg-Si and Al-Zn-Mg alloys. With decreasing the impact testing temperatures, specimens underwent a transition from dimple-type transgranular fracture to lamella surface-type intergranular fracture because of the precipitate at the grain boundaries, impurities and crystal structure of the precipitates.s.

  • PDF

스크린 질화/DLC 복합 코팅이 정밀 플라스틱 사출금형용 Fe-3.0%Ni-0.7%Cr-1.4%Mn-X강의 기계적 특성 및 고주기 피로 특성에 미치는 영향 (The Effects of Screen Nitriding/DLC Multi Surface Treatment on High Cycle Fatigue and Mechanical Properties of Fe-3.0%Ni-0.7%Cr-1.4%Mn-X Steel for High Precision Plastic Injection Mold.)

  • 김송희;장재철
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.202-203
    • /
    • 2014
  • 금형 내부의 마모를 줄이기 위한 경질 박막의 안정성 향상과 표면에 인가된 압축 잔류 응력이 고주기 피로 특성에 미치는 영향을 연구하기 위해 정밀 플라스틱 사출 금형강에 주로 사용되는 Fe-3.0%Ni-0.7%Cr-1.4%Mn-X강에 스크린 질화처리와 DLC 코팅을 시간과 단일, 복합처리의 변수를 두어 코팅하였다. PAPVD법으로 DLC($3{\mu}m$), 스크린 질화(3h, $50{\mu}m$)/DLC($3{\mu}m$) 코팅 후 고주기 피로 시험을 행하여 고주기 피로 특성을 평가하였다. 스크래치 시험, 마모 시험, 잔류응력 측정을 통해 질화 처리 여부에 따른 코팅의 안정성을 평가하였다. DLC, 스크린질화/DLC 코팅한 경우 압축 잔류 응력의 영향으로 모두 피로 수명이 향상되었고 스크린질화/DLC 코팅한 경우 그 향상폭은 더 컸다. 질화 처리 후 DLC 코팅한 경우 질화층은 버퍼레이어로 작용하여 코팅의 박리를 억제함을 확인하였다.

  • PDF

Global hydroelastic analysis of ultra large container ships by improved beam structural model

  • Senjanovic, Ivo;Vladimir, Nikola;Tomic, Marko;Hadzic, Neven;Malenica, Sime
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.1041-1063
    • /
    • 2014
  • Some results on the hydroelasticity of ultra large container ships related to the beam structural model and restoring stiffness achieved within EU FP7 Project TULCS are summarized. An advanced thin-walled girder theory based on the modified Timoshenko beam theory for flexural vibrations with analogical extension to the torsional problem, is used for formulation of the beam finite element for analysis of coupled horizontal and torsional ship hull vibrations. Special attention is paid to the contribution of transverse bulkheads to the open hull stiffness, as well as to the reduced stiffness of the relatively short engine room structure. In addition two definitions of the restoring stiffness are considered: consistent one, which includes hydrostatic and gravity properties, and unified one with geometric stiffness as structural contribution via calm water stress field. Both formulations are worked out by employing the finite element concept. Complete hydroelastic response of a ULCS is performed by coupling 1D structural model and 3D hydrodynamic model as well as for 3D structural and 3D hydrodynamic model. Also, fatigue of structural elements exposed to high stress concentration is considered.

Case Study of Non-Metallic Repair Systems for Metallic Piping

  • Hammad, Bakr. S.
    • Corrosion Science and Technology
    • /
    • 제7권1호
    • /
    • pp.6-12
    • /
    • 2008
  • Non-metallic composite overwrap repair methods utilize resin based fiber-reinforced composite materials, which have higher specific strength to weight ratio and stiffness, superior corrosion and fatigue resistance, and substantially reduced weight when compared to carbon steel. Non-metallic repair methods/systems can allow desired functional properties to be achieved at a respectable economic advantage. For example, non-metallic composite repair systems have at least a 50 year design stress of 20 ksi and approximately 25% of the short term tensile strength of fiberglass. For these systems, the contribution of the repaired steel to the load carrying capability need not be considered, as the strength of the repair itself is sufficient to carry the internal pressure. Worldwide experience in the Oil & Gas industry confirms the integrity, durability, inherent permanency, and cost-effectiveness of non-metallic composite repair or rehabilitation systems. A case study of a recent application of a composite repair system in Saudi Aramco resulted in savings of 37% for offshore subsea line and 75% for onshore above grade pipeline job. Maintaining a pipeline can be costly but it is very small in comparison to the cost of a failure. Pipeline proponents must balance maintenance costs with pipeline integrity. The purpose is not just to save money but also to attain a level of safety that is acceptable. This technology involves the use of an epoxy polymer resin based, fiber-reinforced composite sleeve system for rehabilitation and /or repair pipelines.

Creep behaviour of flexible adhesives

  • van Straalen, Ijsbrand J.;Botter, Erik;van den Berg, Arnold;van Beers, Peter
    • 접착 및 계면
    • /
    • 제5권2호
    • /
    • pp.5-14
    • /
    • 2004
  • Since flexible adhesives are used more and more in structural applications, designers should have a better understanding of its behaviour under various conditions as ultimate load, fatigue load, long-term load and environmental conditions. This paper focuses on long-term load conditions and its effect on flexible adhesives. The creep properties of both PU (PolyUrethane) and SMP (Silyl Modified Polymers) adhesives used for identical applications are considered. To investigate the creep behaviour tests under various conditions were done. The results of those tests are presented and compared. To evaluate these results an empirical method is proposed and discussed. An example illustrates the potential of this method. It is also shown that with use of a probabilistic calibration technique this method results into a simple rule, which can be used to calculate the creep for practical applications. For the studied adhesives, the creep performance of the SMP adhesive is shown to be of the same level or slightly better than of the two PU adhesives. In addition to this empirical method, the principles of a more complex theoretical based method are introduced. The potential of this method is illustrated and future research activities are drawn.

  • PDF

Constituents and Effects of Ginseng Leaf

  • Xie, Jing-Tian;Wu, Ji-An;Lin, Elaine;Wang, Chong-Zhi;Yuan, Chun-Su
    • Advances in Traditional Medicine
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2004
  • Ginseng root has been used as a tonic remedy in Traditional Chinese Medicine for centuries. Modern studies have demonstrated that ginseng root has complex components and multiple pharmacological properties. The effects of ginseng leaf, however, are not well known. Recent studies show that compared to ginseng root, ginseng leaf and stem exhibit a higher content of active compositions such as ginsenosides, polysaccharides, triterpene flavonoids, volatile oil, polyacetylenic alcohols, peptides, amino acids and fatty acids. Ginseng leaf possesses multiple pharmacological effects in the central nervous, cardiovascular, growth and metabolism systems. Additionally, the leaf has anti-fatigue, anti-hyperglycemic, anti-oxidant, and anti-aged effects. In general, ginseng leaf is quite safe, but adverse effects may occur if it is abused or is of poor quality. Thus, attention must be paid to dosages, quality, and standardization of ginseng leaf products.