• 제목/요약/키워드: Fatigue properties

검색결과 1,123건 처리시간 0.03초

기판 조건에 따른 SBT 강유전체 커패시터의 특성 (Capacitor characteristics of SBT Ferroelectric Thin Films depending on substrate conditions)

  • 박상준;장건익
    • 한국전기전자재료학회논문지
    • /
    • 제13권2호
    • /
    • pp.143-150
    • /
    • 2000
  • Ferroelectric SrxBi2+yTa2O9+$\alpha$ thin films with various compositions(x=0.7, 0.8, 1, y=0.3, 0.4) were prepared by sol-gel method. The film with moled ratio of 0.8:2.3:2.0 in Sr/Bi/Ta, which was deposited on Pt/SiO2/Si (100), showed better ferroelectric properties than other films. To investigate substrate effects, the same compositions were spin coated on Pt/Ti/SiO2/Si (100) substrates. At an applied voltage of 5V, the dielectric constant($\varepsilon$r), remanent polarization (2Pr) and coercive field (Ec) of the Sr0.8Bi2.3Ta2O9+$\alpha$ thin film prepared on Pt/Ti/SiO2/Si (100) were about 296, 24$\mu$C/$\textrm{cm}^2$ and Ec of 49kV/cm respectively. Both SBT films firred at 80$0^{\circ}C$ revealed no fatigue up to 1010 cycles. Retention characteristics of these capacitors showed no degradation up to 104 sec.

  • PDF

보일러 고온요소의 수명 감시시스템 소프트웨어 개발 (Development of On-line Life Monitoring System Software for High-temperature Components of Power Boilers)

  • 윤필기;정동관;윤기봉
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1999년도 춘계 학술발표회 논문집
    • /
    • pp.171-176
    • /
    • 1999
  • Nondestructive inspection and accompanying life analysis based on fracture mechanics were the major conventional methods for evaluating remaining life of critical high temperature components in power plants. By using these conventional methods, it has been difficult to perform in-service inspection for life prediction. Also, quantitative damage evaluation due to unexpected abrupt changes in operating temperature was almost impossible. Thus, many efforts have been made for evaluating remaining life during operation of the plants and predicting real-time life usage values based on the shape of structures, operating history, and material properties. In this study, a core software for on-line life monitoring system which carries out real-time life evaluation of a critical component in power boiler(high temperature steam headers) is developed. The software is capable of evaluating creep and fatigue life usage from the real-time stress data calculated by using temperature/stress transfer Green functions derived for the specific headers and by counting transient cycles. The major benefits of the developed software lie in determining future operating schedule, inspection interval, and replacement plan by monitoring real-time life usage based on prior operating history.

  • PDF

원심주조한 마르텐사이트 스테인레스강의 기계적 성질에 미치는 템퍼링 영향 (Effect of Tempering on the Mechanical Properties of Martensitic Stainless Steels Fabricated by Centrifugal Casting)

  • 배은재;백응률;안종헌
    • 한국주조공학회지
    • /
    • 제28권3호
    • /
    • pp.113-118
    • /
    • 2008
  • A new approach of producing martensitic structure for guide-roll materials was developed using centrifugal casting instead of classic overlay welding process. Centrifugal casting offered a simpler process, fewer defects and even microstructures. Especially in terms of thermal fatigue cracking which usually occurs in the HAZ of welding beads of used continuous caster guide roll materials made by overlay welding process. A typical tensile strength of 1,600 MPa was obtained by this process and was higher than typical tensile strength($800{\sim}1,200\;MPa$) with overlay welding technique. Tempering at $400{\sim}550^{\circ}C$ for 2 hrs was observed to have significant precipitate hardening effect which increases strength and elongation. Nitrogen content from the Cr-N input in the casting process was found to have positive contribution to decrease the volume fraction of ${\delta}$-ferrite which directly corresponds to increasing strength of the roll materials.

MOCVD로 증착된 $Bi_4Ti_3O_{12}$ 박막의 미세구조와 강유전성에 Cerium 첨가가 미치는 영향 (The Effect of Ce Substitution on Microstructure and Ferroelectric Properties of $Bi_4Ti_3O_{12}$ Thin Films Prepared by MOCVD)

  • 강동균;박원태;김병호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.12-13
    • /
    • 2006
  • Ferroelectric Cerium-substituted $Bi_4Ti_3O_{12}$ thin films with a thickness of 200 nm were deposited using the liquid delivery metal organic chemical vapor deposition process onto a Pt(111)/Ti/$SiO_2$/Si(100) substrate. At annealing temperature above $600^{\circ}C$, the BCT thin films became crystallized and exhibited a polycrystalline structure. The BCT thin film annealed at $720^{\circ}C$ showed a large remanent polarization ($2P_r$) of $44.56\;{\mu}C/cm^2$ at an applied voltage of 5V. The BCT thin film exhibits a good fatigue resistance up to $1{\times}10^{11}$ switching cycles at a frequency of 1 MHz with applied electric field of ${\pm}5\;V$.

  • PDF

Recommended properties of elastic wearing surfaces on orthotrotropic steel decks

  • Fettahoglu, Abdullah
    • Steel and Composite Structures
    • /
    • 제18권2호
    • /
    • pp.357-374
    • /
    • 2015
  • Orthotropic decks composed of deck plate, ribs, cross beams and wearing surface are frequently used in industry to span long distances due to their light structures and load carrying capacities. As a result they are broadly preferred in industry and there are a lot of bridges of this type exist in the world. Nevertheless, some of them cannot sustain the anticipated service life and damages in form of cracks develop in steel components and wearing surface. Main reason to these damages is seen as the repetitive wheel loads, namely the fatigue loading. Solutions to this problem could be divided into two categories: qualitative and quantitative. Qualitative solutions may be new design methodologies or innovative materials, whereas quantitative solution should be arranging dimensions of deck structure in order to resist wheel loads till the end of service life. Wearing surface on deck plate plays a very important role to avoid or mitigate these damages, since it disperses the load coming on deck structure and increases the bending stiffness of deck plate by forming a composite structure together with it. In this study the effect of Elastic moduli, Poisson ratio and thickness of wearing surface on the stresses emerged in steel deck and wearing surface itself is investigated using a FE-model developed to analyze orthotropic steel bridges.

Development and validation of a numerical model for steel roof cladding subject to static uplift loads

  • Lovisa, Amy C.;Wang, Vincent Z.;Henderson, David J.;Ginger, John D.
    • Wind and Structures
    • /
    • 제17권5호
    • /
    • pp.495-513
    • /
    • 2013
  • Thin, high-strength steel roof cladding is widely used in residential and industrial low-rise buildings and is susceptible to failure during severe wind storms such as cyclones. Current cladding design is heavily reliant on experimental testing for the determination of roof cladding performance. Further study is necessary to evolve current design standards, and numerical modelling of roof cladding can provide an efficient and cost effective means of studying the response of cladding in great detail. This paper details the development of a numerical model that can simulate the static response of corrugated roof cladding. Finite element analysis (FEA) was utilised to determine the response of corrugated cladding subject to a static wind pressure, which included the anisotropic material properties and strain-hardening characteristics of the thin steel roof cladding. The model was then validated by comparing the numerical data with corresponding experimental test results. Based on this comparison, the model was found to successfully predict the fastener reaction, deflection and the characteristics in deformed shape of the cladding. The validated numerical model was then used to predict the response of the cladding subject to a design cyclone pressure trace, excluding fatigue effects, to demonstrate the potential of the model to investigate more complicated loading circumstances.

Application of a Dynamic-Nanoindentation Method to Analyze the Local Structure of an Fe-18 at.% Gd Cast Alloy

  • Choi, Yong;Baik, Youl;Moon, Byung M.;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.576-580
    • /
    • 2017
  • A dynamic nanoindentation method was applied to study an Fe-18 at.% Gd alloy as a neutron-absorbing material prepared by vacuum arc-melting and cast in a mold. The Fe-18 at.% Gd cast alloy had a microstructure with matrix phases and an Fe-rich primary dendrite of $Fe_9Gd$. Rietveld refinement of the X-ray spectra showed that the Fe-18 at.% Gd cast alloy consisted of 35.84 at.% $Fe_3Gd$, 6.58 at.% $Fe_5Gd$, 16.22 at.% $Fe_9Gd$, 1.87 at.% $Fe_2Gd$, and 39.49 at.% ${\beta}-Fe_{17}Gd_2$. The average nanohardness of the primary dendrite phase and the matrix phases were 8.7 GPa and 9.3 GPa, respectively. The fatigue limit of the matrix phase was approximately 37% higher than that of the primary dendrite phase. The dynamic nanoindentation method is useful for identifying local phases and for analyzing local mechanical properties.

조혈모세포 이식 환자의 불면증 (Insomnia in Patients with Hematopoietic Stem Cell Transplantation(HSCT))

  • 이상신;김현석
    • 생물치료정신의학
    • /
    • 제24권3호
    • /
    • pp.142-155
    • /
    • 2018
  • Insomnia in patients with hematopoietic stem cell transplantation(HSCT) has been underdiagnosed and undertreated. This study reviewed the frequency, characteristics, physical and psychological effects, and treatments of insomnia in HSCT patients to highlight clinical importance in this specialized population. Furthermore, the authors intended to suggest a model that would conceptualize insomnia in the context of HSCT. In the pre-transplant period, about half of patients with HSCT suffered from sleep disturbance. A substantial number of patients experienced distressing insomnia during the HSCT procedure and recovered to the level of the pre-transplant period. However, sleep disruption could be a chronic symptom in HSCT survivors and could negatively impact quality of control, cancer-related fatigue(CRF), immune function, and psychological distress. The 3P's model(Predisposing, Precipitating, Perpetuating) explains insomnia in cancer population and could be also relevant to HSCT patients with specific consideration of CRF, graft-versus-host diseases, specific properties of hematological disease, and protective isolated milieu. Effective treatment of insomnia in HSCT includes non-pharmacological(e.g., cognitive behavioral therapy, environmental modification) and pharmacological interventions. The decision of pharmacological treatment should be based on the issue of safety due to high risk of potential drug-drug interactions. Screening, treatment, and further research of insomnia in HSCT patients using validated subjective and/or objective measures are warranted.

Tensile and fracture characterization using a simplified digital image correlation test set-up

  • Kumar, Abhishek;Vishnuvardhan, S.;Murthy, A. Ramachandra;Raghava, G.
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.467-477
    • /
    • 2019
  • Digital image correlation (DIC) is now a popular and extensively used full-field metrology technique. In general, DIC is performed by using a turnkey solution offered by various manufacturers of DIC. In this paper, a simple and economical set-up for DIC is proposed which uses easily accessible digital single-lens reflex (DSLR) camera rather than industrial couple-charged device (CCD) cameras. The paper gives a description of aspects of carrying a DIC experiment which includes experimental set-up, specimen preparation, image acquisition and analysis. The details provided here will be helpful to carry DIC experiments without specialized DIC testing rig. To validate the responses obtained from proposed DIC set-up, tension and fatigue tests on specimens made of IS 2062 Gr. E300 steel are determined. Tensile parameters for a flat specimen and stress intensity factor for an eccentrically-loaded single edge notch tension specimen are evaluated from results of DIC experiment. Results obtained from proposed DIC experiments are compared with those obtained from conventional methods and are found to be in close agreement. It is also noted that the high resolution of DSLR allows the use of proposed approach for fracture characterization which could not be carried out with a typical turnkey DIC solution employing a camera of 2MP resolution.

Initiation and propagation of a crack in the orthopedic cement of a THR using XFEM

  • Gasmi, Bachir;Abderrahmene, Sahli;Smail, Benbarek;Benaoumeur, Aour
    • Advances in Computational Design
    • /
    • 제4권3호
    • /
    • pp.295-305
    • /
    • 2019
  • The sealing cement of total hip arthroplasty is the most widely used binder in orthopedic surgery for anchoring implants to their recipient bones. Nevertheless, this latter remains a fragile material with weak mechanical properties. Inside this material cracks initiate from cavities. These cracks propagate under the effect of fatigue and lead to the failure of this binder and consequently the loosening of the prosthesis. In this context, this work consists to predict the position of cracks initiation and their propagations path using the Extended Finite Element Method (XFEM). The results show that cracks can only be initiated from a sharp edges of an ellipsoidal cavity which the ratio of the minor axis over the major axis is equal to 0.1. A maximum crack length of 19 ?m found for a cavity situated in the proximal zone position under a static loading. All cracks propagate in same(almost) way regardless of the cavity(site of initiation) position and its inclination in the proximal zone.