• Title/Summary/Keyword: Fatigue crack propagation analysis

Search Result 167, Processing Time 0.024 seconds

A Study on the fracture Mechanical Behavior of Cruciform Welded Joint With Fracture Cracks (십자형 필렛 용접 이음의 피로균열 에 대한 파괴 역학적 고찰)

  • 엄동석;강성원;유덕상
    • Journal of Welding and Joining
    • /
    • v.1 no.1
    • /
    • pp.37-46
    • /
    • 1983
  • This paper describes a study of fillet welded joint stressed perpendicular to the weld line. The finite element method was used to determine the stress intensity factor for cruciform joint at weld toe and root cracks according to variation of H/Tp, weld angle and main plate thickness. But, in this study, weld angle was fixed at 45.deg., since the variation of weld angle affect the stress intensity factor little, also main plate thickness was fixed. Pulsating tension fatigue test was done at the second phase of experiment. The work using the concepts of the fracture mechanics on the stable crack growth, was in the correlation of the experimental fatigue stress-life behavior because the fatigue behaviors of various joint geometries are related to the stress intensity factors calculated by F.E.M. analysis. Main results obtained are summarized as follows. 1) According to the propagation of toe crack, the variation of the stress intensity factor at root crack is obvious as H/Tp is smaller. 2) According to the propagation of root cracks, the change of the stress intensity factor of the toe is very large with propagation of root crack. 3) The calculation formula of the stress intensity factor of crack propagation at the root crack was obtained. 4) The calculation formula of the stress intensity factor at the toe cracks was obtained in similar manner. 5) From the results of experiment, the velocity of fatigue crack propagation at the weld toe and root was estimated.

  • PDF

An Analysis of the Redistribution of Residual Stress Due to Crack Propagation Initially Through Residual Tensile Stress Field by Finite Element Method (인장잔류응력장으로부터 피로균열이 전파하는 경우 잔류응력의 재분포거동에 대한 해석적 검토)

  • 김응준;박응준;유승현
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.71-77
    • /
    • 2003
  • In this study, an investigation based on the superposition principle to predict residual stress redistribution caused by crack propagation itself initially through residual tensile stress field was performed by finite element method. The tendency in residual stress redistribution caused by crack propagation recognized both from the analytical results and experimental result was the residual stress concentration consecutively occurred in the vicinity of crack tip even the situation that the crack propagated to the region initially residual compressive stress existed. The software for the analysis is ABAQUS, which is a general purpose finite element package. The analytical method that attempt to take the plastic deformation at the crack tip due to tensile residual stress into the consideration of residual stress redistribution caused by crack propagation was proposed. The plastic zone size at the tip of fatigue crack and redistributed residual stresses were calculated by finite element method on the bases of the concept of Dugdale model. Comparing these analytical results with experimental results, it is verified that the residual stress redistribution caused by crack propagation can be predicted by finite element method with the proposed analytical method.

Fatigue Life and Stress Spectrum of Wing Structure of Aircraft (항공기 주익 구조물의 응력스펙트럼 및 피로수명 추정에 관한 연구)

  • Kang, Ki-Weon;Koh, Seung-Ki;Choi, Dong-Soo;Kim, Tae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1185-1191
    • /
    • 2010
  • Aged aircraft have several cracks as a results of long-term service, and these cracks affect the safety and decrease the rate of operation of the aircraft. To solve these problems, crack propagation analysis should be performed to determine the service life at fatigue critical location(FCL). It is, however, almost impossible to obtain the stress spectrum, which is crucial for crack propagation analysis of the FCLs of wing structure of aged aircraft. In this study, to analyze the fatigue crack propagation behavior at the FCL of an aged aircraft, first finite element analysis is performed for a 3D geometry model of the aircraft wing structure, which is obtained using CATIA based on the paper drawings. Then, the transfer function and stress-spectrum of the FCL are derived using the load factor data and the FEA results. Finally, the crack propagation rates of the FCL are evaluated using the commercial software, NASGRO 6.0.

Characteristics of AE Signals from Fatigue Crack Propagation and Penetration of a Surface Crack in 6061 Aluminum Plate

  • Ahn, Seok-Hwan;Nam, Ki-Woo
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.4 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • Existing surface defects in structural members often act as sites of fatigue crack initiation, and if undetected, these cracks may grow through the thickness of the member, leading to catastrophic failure of the structure. Thus, in-service monitoring of fatigue cracks through reliable and effective nondestructive techniques is an important ingredient in the leak-before-break (LBB) design and safe operation of defects critical structures. An advanced, waveform-based, acoustic emission (AE) technique has been used in this paper to study the characteristics of the signals emanating from the initiation, growth and through-the -thickness penetration of surface fatigue crack in a 6061 aluminum plate. The goal of this experimental study is to determine whether the evolution of the fatigue crocks could be identified from the properties of the waveforms produced during the tests. The AE waveform signals detected at different stages of crack growth was found to have different temporal and spectral characteristics. The data analysis technique presented here can be applied to real-time monitoring of the initiation and propagation of fatigue cracks in structural components.

  • PDF

Assessment for Propagation Behavior and Fracture Surface of Mixed-mode Fatigue Crack by Fracture Surface-Roughness Induced Crack Closure (파면거칠기 유도 균열닫힘에 의한 혼합모드 피로균열의 전파거동 및 파면에 대한 평가)

  • Seo, Ki-Jeong;Lee, Jeong-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.432-440
    • /
    • 2007
  • In this study, we have investigated the closure behavior of fatigue cracks in SAPH440 steel plates under a mixed-mode I+II loading. A crack image capturing system as a direct measuring method was used to measure the closure levels at a crack tip. The crack closure levels in the fluctuation and stable sections were increased with the increase of the mode mixture ratio. The mode mixture ratio independent fatigue crack propagation rates equation was calculated by considering mixed-mode crack closure levels. The equation was examined according to the application method of crack opening ratio. The fracture surface analysis by C-scan method was also performed in order to investigate the closure mechanism and propagation mode of crack under the mixed-mode I+II loading. The crack closure under the mixed mode I+II is confirmed as a surface roughness closure by the quantitative analysis of fracture surface using the proposed surface roughness parameter.

Fatigue Life Assessment of Steel Bridge Butt Joint Weld with Defects (강교량 맞대기용접 결함부의 피로수명 평가)

  • 백영남;장영권
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.77-85
    • /
    • 2000
  • There are many weld defects such as surface crack, lack of fusion, and incomplete penetration (IP) in the butt joint weld of existing steel bridges. The crack-like defects may significantly reduce the fatigue life of the structure. This paper presents the procedure and the results of the fatigue life assessment of the butt joints with weld defects in the existing steel girder bridge. The butt joint welds with incomplete penetration were instrumented with strain gages to determine the stress histogram under normal traffic. Based on the measured stress histogram the crack propagation analysis were performed for the fatigue life assessment. By using the suggested procedure and methodology, one can decide the time of periodic inspection and the necessity of repair of the butt joint welds with serious weld defects in the existing steel bridge.

  • PDF

Fatigue Strength and Root-Deck Crack Propagation for U-Rib to Deck Welded Joint in Steel Box Girder

  • Zhiyuan, YuanZhou;Bohai, Ji;Di, Li;Zhongqiu, Fu
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1589-1597
    • /
    • 2018
  • Fatigue tests and numerical analysis were carried out to evaluate the fatigue performance at the U-rib to deck welded joint in steel box girder. Twenty specimens were tested corresponding to different penetration rates (80 and 100%) under fatigue bending load, and the fatigue strength was investigated based on hot spot stress (HSS) method. The detailed stress distribution at U-rib to deck welded joint was analyzed by the finite element method, as well as the stress intensity factor of weld root. The test results show that the specimens with fully penetration rate have longer crack propagation life due to the welding geometry, resulting in higher fatigue failure strength. The classification of FAT-90 is reasonable for evaluating fatigue strength by HSS method. The penetration rate has effect on crack propagation angle near the surface, and the 1-mm stress below weld toe and root approves to be more suitable for fatigue stress assessment, because of its high sensitivity to weld geometry than HSS.

Research for the Evaluation of Corrosion Fatigue Crack Initiation Life (해수환경중 부식피로균열 발생수명 평가에 관한 연구)

  • Kim, Won-Beom;Paik, Jeom-Kee;Yajima, Hiroshi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.417-424
    • /
    • 2007
  • With regard to corrosion fatigue crack initiation life (Nc), it has been treated ambiguously for the member which doesn't have stress concentration area. In this research, in order to clarify the corrosion fatigue crack initiation life (Nc), corrosion fatigue tests were carried out. Reasonable and universal corrosion fatigue crack initiation life (Nc) was defined and corrosion fatigue crack initiation/propagation model was suggested also. As the fatigue crack which emanates from the pit is usually small, accordingly it is treated as a small crack. In addition, the observation of the corrosion fatigue fracture surfaces using SEM was conducted. And the fracture mechanics analysis using an intrinsic crack model was conducted for the treatment of the small crack. Finally, the followings were obtained. When there is no clear stress concentration point which seems to fall into a corrosion fatigue crack initiation life, the significance of the definition and suggestion of the moment of the reasonable and universal corrosion fatigue crack initiation life (Nc), at which the fatigue crack propagation rate becomes faster than the corrosion pit growth rate so that the fatigue crack initiates from the pit and propagates in earnest, has been clarified.

Fatigue Crack Growth Analysis of Steel Deckplates Under Bending Stress (휨응력을 받는 바닥강판의 피로균열진전해석)

  • Choi, Jun Hyeok;Kyung, Kab Soo;Choi, Dong Ho;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.409-416
    • /
    • 1999
  • The fatigue crack growth analysis based on the fracture mechanics is useful to the estimation of the fatigue life on welded structures under cyclic loading. The analysis procedure in fatigue crack growth under uniform axial loading is applicable to bending fatigue problem as well. The intent of the present study is to show the procedure for calculating the fatigue crack propagation lifetimes of deckplates under bending stress and to explain the crack growth rates for the two dimensional crack problems. It is shown that the fatigue crack grows at a decreasing rate and the fatigue life depends on the initial crack length and the crack shape. The numerically predicted crack growth agree with the experimental data.

  • PDF

Fatigue Failure Analysis of Plates under Multi-axial Loading (다축응력상태 평판의 피로파괴 해석)

  • 이상호;윤영철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.321-326
    • /
    • 1999
  • In this study, fatigue crack propagation problem of plate under multi-axial loading is mainly considered To analyze this special problem, recently developed technique called EFGM(Element-Free Galerkin Method), one of the Meshfree Methods, and general fatigue crack growth raw herein Paris law are used Using the Implemented scheme, paths of fatigue cracks by constant-amplitude load fluctuation and multiple-crack growth behavior are examined. The failure mechanism of steel plate due to crack propagation is studied. As a result, an algorithm that treats multiple fatigue crack problems is proposed. A numerical example shows that the prediction of growing paths can be achieved successfully and efficiently by proposed algorithm.

  • PDF