• 제목/요약/키워드: Fatigue crack growth life

Search Result 307, Processing Time 0.028 seconds

Fatigue Behavior of Welded Joints in HT60 Grade TMCP Steel (HT60급 TMCP강 용접부의 피로 거동)

  • Yong, Hwan Sun;Kim, Seok Tae;Cho, Yong Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.133-133
    • /
    • 1996
  • Application of the relationship $da/dN=C({\Delta}K)^{m}$ is effective in the analysis of fatigue crack growth life. The values of material constant C and m have great influences on the predicted fatigue life and the relationship between fatigue crack growth rate(da/dN) and stress intensity factor range(${\Delta}K$) is effective in fatigue crack growth behavior. In this paper, fatigue crack growth behavior of the welded joints in HT60 grade TMCP(Thermo Machanical Control Process) steel have been studied. To evalute the fatigue crack growth rates of HT60 grade TMCP steel, fatigue test was performed by base metal(BM), heat affected zone(HAZ) and weld metal(WM) in TMCP steel at room temperature. We determined the relationship of $da/dN-{\Delta}K$ by correlation between C and m obtained from the Paris-Erdogan power law data supplied HT60 grade TMCP steel. The obtained results from this study indicate that fatigue crack growth rate of TMCP steel is not influenced by softening effect which occurs in the HAZ when high heat input weld is carried out. Softening effects, which affect fatigue properties. are shown that it is not affected to the fatigue growth rates significantly.

  • PDF

The Fatigue Life and Crack Penetration Behavior of High-Strength Steel (고장력강의 피로수명과 균열관톤 거동에 관한 연구)

  • 남기우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1990-2001
    • /
    • 1991
  • The fatigue life and crack penetration behavior of high strength steel have been studied in detail both experimentally and analytically. The fatigue crack shape of a smooth specimen is almost semicircular, while a specimen with stress concentration becomes semielliptical according to stress concentration shape. The aspect ratio of smooth specimens calculated using the Newman-Raju's formular is smaller than the value obtained from the experiment. On the other hand, the aspect ratio of the stress concentration specimen shows a good agreement with experimental results. It is found that the crack growth behavior on the back surface after the penetration is unique and can be divided into three stages ; rapid growth region, constant growth region and acceleration growth region. By using the K value suggested in this study, the particular crack growth behavior and crack shape can be estimated quantitatively.

Prediction and Application of Fatigue Life on Characteristics of Fatigue Crack Propagation of Thin Sheet Alloy (박판합금재료의 피로균열 전파특성에 대한 피로수명예측과 활용)

  • Lee, Ouk-Sub;Kim, Seung-Gwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.103-109
    • /
    • 2007
  • In fatigue life prediction, it is important that fatigue life is affected by crack closure phenomenon in thin sheet Al alloy. In this research, we attempt to (1)analyze the characteristics of fatigue crack propagation in constant loading condition for thin sheet Al 2024-T3 alloy which is generally used in transportation structures, (2)identify the crack closure phenomenon in thin sheet comparing experimental results of thin and thick sheet specimen under same fatigue loading condition. In using the fatigue related material constants from these fatigue crack propagation analysis, we attempt to (3)operate the fatigue life estimating process with considering crack closure phenomenon and (4)analyze the experimental and prediction results of fatigue life in thin sheet Al alloy.

Statistical Life Prediction of Fatigue Crack Growth for SiC Whisker Reinforced Aluminium Composite (SiC 휘스커 보강 Al6061 복합재료의 통계학적 피로균열진전 수명예측)

  • 권재도;안정주;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.475-485
    • /
    • 1995
  • In this study, statistical analysis of fatigue data which had obtained from respective 24 fatigue crack, was examined for SiC whisker reinforced aluminium 6061 composite alloy (SiC$_{w}$/A16061) and aluminium 6061 alloy. SiC volume fraction in composite alloy is 25%. The analysis results stress intensity factor range and 0.1 mm fatigue crack initiation life for SiC$_{w}$/A16061 composite & A16061 matrix are the log-normal distribution. And regression analysis by linear model, exponential model and multiplicative model were performed to find out the relationship between fatigue crack growth rate(da/dN) and stress intensity for find out the relationship between fatigue crack growth rate(da/dN) and stress intensity factor range(.DELTA.K) in the SiC$_{w}$/A16061 composite and examine the applicability of Paris' equation to SiC$_{w}$A16061 composite. Also computer simulation was performed for fatigue life prediction of SiC$_{w}$/A16061 composite using the statistical results of this study.udy.

Cold expansion effect on the fatigue crack growth of Al 6082: numerical investigation

  • Aid, Abdekrim;Semari, Zahar;Benguediab, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.225-235
    • /
    • 2014
  • Cold expansion is an efficient way to improve the fatigue life of an open hole. In this paper, three finite element models have been established to bind the crack growth from an expanded hole and simulated. Expansion and its degree influence are studied using a numerical analysis. Stress intensity factors are determined and used to evaluate the fatigue life. Residual stress field is evaluated using a nonlinear analysis and superposed with the applied stresses field in order to estimate fatigue crack growth. Experimental tests are conducted under constant loading. Results of this investigation indicate expansion and its degree are beneficial to fatigue life and a good agreement was observed between FEM simulations and experimental results.

Effect of Corrosion on Fatigue Life of Piping material under Repeating Load (반복하중을 받는 배관용 강재의 피로수명에 미치는 부식의 영향)

  • Park, Keyung-Dong;An, Jae-Pil
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.228-229
    • /
    • 2005
  • The compressive residual stress, which is induced by shot peening process, has the effect of increasing the intrinsic fatigue strength of surface and therefore would be beneficial in reducing the probability of fatigue damage. However, it was not known that the effect of shot peening in corrosion environment. In this study, the effect of shot peening on corrosion fatigue crack growth of sping steel immersed in 6% $FeCl_3$ solution and corrosion characteristics with considering fracture mechanics. The results of the experimental study corrosion fatigue characteristics of spring steel are as follows; the fatigue crack growth rate of the shot peening material was lower than of the un peening material. And fatigue life shows more improvement in the shot peening material than un peening material. This is because the compressive residual stress of surface operate resistance of corrosion fatigue crack propagation. It is assumed that the shot peening process improve corrosive resistance and mechanical property.

  • PDF

Crack growth life model for fatigue susceptible structural components in aging aircraft

  • Chou, Karen C.;Cox, Glenn C.;Lockwood, Allison M.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.29-50
    • /
    • 2004
  • A total life model was developed to assess the service life of aging aircraft. The primary focus of this paper is the development of crack growth life projection using the response surface method. Crack growth life projection is a necessary component of the total life model. The study showed that the number of load cycles N needed for a crack to propagate to a specified size can be linearly related to the geometric parameter, material, and stress level of the component considered when all the variables are transformed to logarithmic values. By the Central Limit theorem, the ln N was approximated by Gaussian distribution. This Gaussian model compared well with the histograms of the number of load cycles generated from simulated crack growth curves. The outcome of this study will aid engineers in designing their crack growth experiments to develop the stochastic crack growth models for service life assessments.

A Study on the Prediection of Fatigue Life in the Axi-symmetric Extrusion Die (축대칭 압출금형의 피로수명예측에 관한 연구)

  • 안수홍;김태형;김병민;최재찬;조해용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.235-239
    • /
    • 1994
  • In this paper, the fatigue behaviour of typical axisymmetric forward extrusion die is investigated and extrusion process is analyzed by the rigid-plastic finite element method and elasto-plastic finite element method. To approach the crack problem involving crack initiation and propagation in extrusion die, LEFM(Linear Elastic Fracture Mechanics) is introduced and singular element which models stress.strain singularity in the crack tip vincity has been used to obtain an accurate stress intensityu factor values and other results. Form the displacement around the crack tip the stress intensity factor and the effective stress intensity factor at the beginning of the die inlet radius has been calculated. Applying proper fatigue crack propagation criterion such as Paris/Erdogan fatigue law to this data the angle and direction of fatigue crack growth has been simulated and these are compared with some experimental results. Using the computed crack growth rate, fatigue life of the extrusion die has been evaluated.

  • PDF

A Experimental Study on the Fatigue Crack Growth Behavior of Thick Plate with Repaired Crack (보수된 균열을 가진 두꺼운 평판의 피로균열 성장 거동에 관한 실험적 연구)

  • Chung, Ki-Hyun;Yang, Won-Ho;Kim, Cheol;Sung, Ki-Deug
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.292-298
    • /
    • 2001
  • An experimental investigation of the effect of composite patching repair was conducted to characterize the fatigue crack growth behavior in thick A16061-T6 (6mm) panels with single bonded patch by fiber reinforced composite patch. Four patch lengths and no patch plate were examined. An analytical procedure, involving three-dimensional finite element method having three layers to model cracked aluminum plate, epoxy by adhesive and composite patch, is calculated the stress intensity factors. From the calculated stress intensity factors, the fatigue crack growth rates are obtained. At the single patching type, different fatigue crack growth ratios through the plate thickness were investigated by using the experimental and analytical results. The results demonstrated that there was a definite variation in fatigue life depending on the size of composite patch. While crack reached the patch end, retardation of crack growth was also revealed in the bonded repair.

  • PDF

Fatigue Crack Growth Behavior for Welded Joint of X80 Pipeline Steel

  • Kim, Young-Pyo;Kim, Cheol-Man;Kim, Woo-Sik;Shin, Kwang-Seon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • The fatigue crack growth behavior of high strength X80 pipeline steel was investigated with compact tension specimens that crack growth directions were aligned either parallel or normal to the rolling direction of the pipeline. Also, the fatigue crack growth rates for welded joint of X80 pipeline steel were investigated with compact tension specimens that crack growth directions were aligned either parallel or normal to the welding line. The experimental results indicated the fatigue crack growth behavior was markedly different in three zones, weld metal, heat affected zone and base metal of welded joints. There was a trend toward increment in the fatigue life of weld metal and heat affected zone as compared with the X80 pipeline steel.