• Title/Summary/Keyword: Fat body, Immunity

Search Result 33, Processing Time 0.025 seconds

Importance of micronutrients in bone health of monogastric animals and techniques to improve the bioavailability of micronutrient supplements - A review

  • Upadhaya, Santi Devi;Kim, In Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.1885-1895
    • /
    • 2020
  • Vitamins and minerals categorized as micronutrients are the essential components of animal feed for maintaining health and improving immunity. Micronutrients are important bioactive molecules and cofactors of enzymes as well. Besides being cofactors for enzymes, some vitamins such as the fat-soluble vitamins, vitamin A and D have been shown to exhibit hormone-like functions. Although they are required in small amount, they play an influential role in the proper functioning of a number of enzymes which are involved in many metabolic, biochemical and physiological processes that contribute to growth, production and health. Micronutrients can potentially have a positive impact on bone health, preventing bone loss and fractures, decreasing bone resorption and increasing bone formation. Thus, micronutrients must be provided to livestock in optimal concentrations and according to requirements that change during the rapid growth and development of the animal and the production cycle. The supply of nutrients to the animal body not only depends on the amount of the nutrient in a food, but also on its bioavailability. The bioavailability of these micronutrients is affected by several factors. Therefore, several technologies such as nanoparticle, encapsulation, and chelation have been developed to improve the bioavailability of micronutrients associated with bone health. The intention of this review is to provide an updated overview of the importance of micronutrients on bone health and methods applied to improve their bioavailability.

Components of human breast milk: from macronutrient to microbiome and microRNA

  • Kim, Su Yeong;Yi, Dae Yong
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.8
    • /
    • pp.301-309
    • /
    • 2020
  • Human breast milk (HBM) is essential for the infant's growth and development right after birth and is an irreplaceable source of nutrition for early human survival. Various infant formulas have many similarities to HBM in many components, but there is no perfect substitute for HBM. Recently, various breast milk components and their roles have been studied according to the development of various analysis techniques. As is already well known, HBM contains about 87%-88% water, and 124-g/L solid components as macronutrients, including about 7% (60-70 g/L) carbohydrates, 1% (8-10 g/L) protein, and 3.8% (35-40 g/L) fat. The composition may vary depending on the environmental factors, including maternal diet. Colostrum is low in fat but high in protein and relatively rich in immuneprotective components. Although HBM contains enough vitamins to ensure normal growth of the infant, vitamins D and K may be insufficient, and the infant may require their supplementation. Growth factors in HBM also serve as various bioactive proteins and peptides on the intestinal tract, vasculature, nervous system, and endocrine system. In the past, HBM of a healthy mother was thought to be sterile. However, several subsequent studies have confirmed the presence of rich and diverse microbial communities in HBM. Some studies suggested that the genera Staphylococcus and Streptococcus may be universally predominant in HBM, but the origin of microbiota still remains controversial. Lastly, milk is the one of most abundant body fluid of microRNAs, which are known to play a role in various functions, such as immunoprotection and developmental programming, through delivering from HBM and absorption by intestinal epithelial cells. In conclusion, HBM is the most important source of nutrition for infants and includes microbiomes and miRNAs for growth, development, and immunity.

Physiological and pharmacological features of the non-saponin components in Korean Red Ginseng

  • Hyun, Sun Hee;Kim, Sung Won;Seo, Hwi Won;Youn, Soo Hyun;Kyung, Jong Soo;Lee, Yong Yook;In, Gyo;Park, Chae-Kyu;Han, Chang-Kyun
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.527-537
    • /
    • 2020
  • Panax ginseng, a medicinal plant, has been used as a blood-nourishing tonic for thousands of years in Asia, including Korea and China. P. ginseng exhibits adaptogen activity that maintains homeostasis by restoring general biological functions and non-specifically enhancing the body's resistance to external stress. Several P. ginseng effects have been reported. Korean Red Ginseng, in particular, has been reported in both basic and clinical studies to possess diverse effects such as enhanced immunity, fatigue relief, memory, blood circulation, and anti-oxidation. Moreover, it also protects against menopausal symptoms, cancer, cardiac diseases, and neurological disorders. The active components found in most Korean Red Ginseng varieties are known to include ginsenosides, polysaccharides, peptides, alkaloids, polyacetylene, and phenolic compounds. In this review, the identity and bioactivity of the non-saponin components of Korean Red Ginseng discovered to date are evaluated and the components are classified into polysaccharide and nitrogen compounds (protein, peptide, amino acid, nucleic acid, and alkaloid), as well as fat-soluble components such as polyacetylene, phenols, essential oils, and phytosterols. The distinct bioactivity of Korean Red Ginseng was found to originate from both saponin and non-saponin components rather than from only one or two specific components. Therefore, it is important to consider saponin and non-saponin elements together.

Effects of dietary Alisma canaliculatum(Alismatis rhizoma), Viscum album (Mistletoe) and Cornus officinalis (Corni fructus) probiotics as feed additives on growth performance and immunity in growing pigs (사료내 택사, 겨우살이 및 산수유 생균제 첨가가 비육돈의 생산성 및 면역성에 미치는 영향)

  • Kim, Ki-Soo;Kim, Gwi-Man;Ji, Hoon;Park, Sung-Wook;Yang, Jeong-Seung;Yang, Chul-Ju
    • Korean Journal of Veterinary Service
    • /
    • v.33 no.4
    • /
    • pp.375-385
    • /
    • 2010
  • An investigation was conducted to evaluate the effects of supplementing Alisma canaliculatum, Viscum album and Cornus officinalis probiotics on the growth performance and immune response in growing pigs. This experiment was conducted using 120 pigs (crossing of Landrace${\times}$Yorkshire and castrated) which were assigned to 5 treatments in 3 replications with 8 pigs per replications. The dietary treatments were NC group (without antibiotics), PC group (basal+Oxytetracycline 50ppm), AC group (basal+A. canaliculatum 0.5%), VA group (basal+V. album 0.5%) and COP group (basal+C. officinalis probiotics 0.5%). The initial body weights of pigs were 35kg on average and the experiment lasted for 9 weeks. The experimental animals were kept in the pens following a completely randomized design. They were provided the diets adequate for grower stage as recommended by NRC (ME:3,265 kcal/kg and CP:16%). COP fed pigs showed lower weight gain up to 6 weeks of age compared to NC group and other groups without significant differences (P>0.05). The carcass weights of pigs fed VA and COP were significantly higher compared to NC group (P<0.05), Back fat thicknesses groups fed three different additives were higher than NC group and lower then PC group (P<0.05). Crude fat contents in loin meat were significantly lower in groups fed three different additives while moisture contents of those three groups were higher than other groups (P<0.05). The thiobarbituric acid reaction substance (TBARS) value measured at fresh and $2^{nd}$ weeks was lower in additives fed groups but no statistical differences were observed among the treatments (P>0.05). Significantly highest PUFA (16.42g/100g) and ${\omega}$-3 fatty acids (ALA, EPA and DHA) content of meat were observed in COP fed pigs compared to NC group (P>0.05), which might mean that three additives function to enhance serum IgG in pigs. In consequence, it can be suggested that AC, VA and COP may have a potential to replace antibiotics as growth promoter and immune enhancer in the diets for growing pigs.

Relationship between Obesity, Gingival Inflammation, and Periodontal Bacteria after 4-Week Weight Control Program in 20's

  • Seo, Min-Seock;Hwang, Soo-Jeong
    • Journal of dental hygiene science
    • /
    • v.22 no.2
    • /
    • pp.99-107
    • /
    • 2022
  • Background: Obesity weakens acquired immunity and causes infection. This study aimed to investigate the relationship between the inflammatory markers in the gingival crevicular fluid and serum and periodontal bacteria in saliva through obesity control for 4 weeks. Methods: Forty-six subjects with a body mass index (BMI) of ≥23 kg/m2 stayed in the camp for 4 weeks, followed by exercise and a low salt-low fat diet. Body size measurements, oral examinations, blood, saliva, and gingival crevicular fluid were collected before and after the program. C-reactive protein (CRP) in serum, matrix metalloproteinase (MMP)-8, MMP-9, and interleukin (IL)-1β in the gingival sulcus fluid were measured. After extracting bacterial genomic DNA from saliva, the presence of periodontal bacteria were detected using Taq probe. The relationship of each index before and after the program was analyzed through paired t-test and partial correlation analysis. Results: Campylobacter rectus (Cr) increased after the program, and there was no significant change in other bacteria. Serum CRP and Fusobacterium nucleatum (Fn), Aggregatibacter actinomycetemcomitans, Cr, ratio of Fn, and ratio of Cr had a positive relationship at baseline; however, the relationship was not significant after the program. Ratio of Prevotella intermedia had a positive relationship with MMP-9, MMP-8, IL-1β at baseline. Moreover, the ratio of Treponema denticola and the ratio of Tannerella forsythia showed a positive relationship with MMP-8, MMP-9, and IL-1β. The relationship between the ratio of Porphyromonas gingivalis and IL-1β showed a constant positive relationship at baseline and after the program. Conclusion: Obesity control program in subjects with a BMI of ≥23 kg/m2 accompanied by diet and exercise did not affect the changes in periodontal bacteria itself, but changes in the relationship between periodontal bacteria and serum CRP, the relationship between the inflammatory index in the gingival crevicular fluid and periodontal bacteria was observed.

The impact of dietary linseed oil and pomegranate peel extract on broiler growth, carcass traits, serum lipid profile, and meat fatty acid, phenol, and flavonoid contents

  • Kishawy, Asmaa TY;Amer, Shimaa A;El-Hack, Mohamed E Abd;Saadeldin, Islam M;Swelum, Ayman A
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1161-1171
    • /
    • 2019
  • Objective: The current study aimed to replace soybean oil in broiler diets with linseed oil, which is rich in omega-3 fatty acid supplemented with pomegranate peel extract (PPE) and measured its effect on broiler performance, carcass traits, lipid profile, as well as fatty acids composition, phenols and flavonoids content of broiler muscles and immunity of broiler chicks. Methods: A total of 300 1-day-old Cobb chicks were randomly allotted into six experimental groups, T1 fed on basal diet with soybean oil without any additives, T2 fed on basal diet with soybean oil with addition of 0.5 g/kg diet PPE, T3 fed on fed on basal diet with soybean oil with addition of 1 g/kg diet PPE, T4 fed on basal diet with linseed oil without any additives, T5 fed on basal diet with linseed oil with addition of 0.5 g/kg diet PPE and T6 fed on basal diet with linseed oil with addition of 1 g/kg diet PPE. The PPE supplementation with 0.05% improved final body weight with either soybean oil ration or linseed oil ration. Results: The PPE improved carcass dressing percentage in comparison with the control groups. Body fat levels decreased with increasing PPE levels, especially with a linseed oil diet. Replacing soybean oil with linseed oil decreased the total cholesterol and triacylglycerol levels in broiler serum. The PPE supplementation decreased serum total cholesterol levels and increased high-density lipoprotein cholesterol levels. The content of the breast muscle alpha linolenic acid improved after replacement of soybean oil with linseed oil in broiler diets. PPE supplementation increased the phenol and flavonoid content in broiler meat and increased lysozyme activity. Conclusion: Replacing soybean oil with linseed oil in broiler diets with the addition of PPE enriched muscle meat with omega-3 fatty acids and antioxidants and improved broiler immunity and their serum lipid profile.

Effects of alfalfa flavonoids on the production performance, immune system, and ruminal fermentation of dairy cows

  • Zhan, Jinshun;Liu, Mingmei;Su, Xiaoshuang;Zhan, Kang;Zhang, Chungang;Zhao, Guoqi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1416-1424
    • /
    • 2017
  • Objective: The objective of this study was to examine the effects of alfalfa flavonoids on the production performance, immunity, and ruminal fermentation of dairy cows. Methods: The experiments employed four primiparous Holstein cows fitted with ruminal cannulas, and used a $4{\times}4$ Latin square design. Cattle were fed total mixed ration supplemented with 0 (control group, Con), 20, 60, or 100 mg of alfalfa flavonoids extract (AFE) per kg of dairy cow body weight (BW). Results: The feed intake of the group receiving 60 mg/kg BW of AFE were significantly higher (p<0.05) than that of the group receiving 100 mg/kg BW. Milk yields and the fat, protein and lactose of milk were unaffected by AFE, while the total solids content of milk reduced (p = 0.05) linearly as AFE supplementation was increased. The somatic cell count of milk in group receiving 60 mg/kg BW of AFE was significantly lower (p<0.05) than that of the control group. Apparent total-tract digestibility of neutral detergent fiber and crude protein showed a tendency to increase (0.05<$p{\leq}0.10$) with ingestion of AFE. Methane dicarboxylic aldehyde concentration decreased (p = 0.03) linearly, whereas superoxide dismutase activity showed a tendency to increase (p = 0.10) quadratically, with increasing levels of AFE supplementation. The lymphocyte count and the proportion of lymphocytes decreased (p = 0.03) linearly, whereas the proportion of neutrophil granulocytes increased (p = 0.01) linearly with increasing levels of dietary AFE supplementation. The valeric acid/total volatile fatty acid (TVFA) ratio was increased (p = 0.01) linearly with increasing of the level of AFE supplementation, the other ruminal fermentation parameters were not affected by AFE supplementation. Relative levels of the rumen microbe Ruminococcus flavefaciens tended to decrease (p = 0.09) quadratically, whereas those of Butyrivibrio fibrisolvens showed a tendency to increase (p = 0.07) quadratically in response to AFE supplementation. Conclusion: The results of this study demonstrate that AFE supplementation can alter composition of milk, and may also have an increase tendency of nutrient digestion by regulating populations of microbes in the rumen, improve antioxidant properties by increasing antioxidant enzyme activities, and affect immunity by altering the proportions of lymphocyte and neutrophil granulocytes in dairy cows. The addition of 60 mg/kg BW of AFE to the diet of dairy cows was shown to be beneficial in this study.

Conjugated Linoleic Acid as a Key Regulator of Performance, Lipid Metabolism, Development, Stress and Immune Functions, and Gene Expression in Chickens

  • Choi, Yang-Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.448-458
    • /
    • 2009
  • It has been well documented from animal and human studies that conjugated linoleic acid (CLA) has numerous beneficial effects on health. In chickens, CLA exerts many effects on performance ranging from egg quality and yolk lipids to meat quality. Although there are several CLA isomers available, not all CLA isomers have the same incorporation rates into egg yolk: cis-9,trans-11 and trans-10,cis-12 CLA isomers are more favorably deposited into egg yolk than other isomers investigated, but of the two isomers, the former has a higher incorporation rate than the latter. CLA alters the amounts and profiles of lipids in plasma, muscles and liver. Furthermore, increased liver weight was reported in chickens fed dietary CLA. As observed in egg yolk, marked reduction in intramuscular lipids as well as increased protein content was observed in different studies, leading to elevation in protein-to-fat ratio. Inconsistency exists for parameters such as body weight gain, feed intake, feed conversion ratio, egg production rate and mortality, depending upon experimental conditions. One setback is that hard-cooked yolks from CLA-consuming hens have higher firmness as refrigeration time and CLA are increased, perhaps owing to alterations in physico-chemistry of yolk. Another is that CLA can be detrimental to hatchability when provided to breeders: eggs from these breeders have impaired development in embryonic and neonatal stages, and have increased and decreased amounts of saturated fatty acids and monounsaturated fatty acids (MUFAs), respectively. Thus, both problems can be fully resolved if dietary sources rich in MUFAs are provided together with CLA. Emerging evidence suggests that CLA exerts a critical impact on stress and immune functions as it can completely nullify some of the adverse effects produced by immune challenges and reduce mortality in a dose-dependent manner. Finally, CLA is a key regulator of genes that may be responsible for lipid metabolism in chickens. CLA down-regulates both expression of the gene encoding stearoyl-CoA desaturase-1 and its protein activity in the chicken liver while up-regulating mRNA of sterol regulatory element-binding protein-l.

Molecular Cloning and Characterization of Lysozyme II from Artogeia rapae and its Expression in Baculovirus-infected Insect Cells

  • Bang, In-Seok;Kang, Chang-Soo
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.175-182
    • /
    • 2007
  • The lysozyme II gene of cabbage butterfly Artogeia rapae was cloned from fat body of the larvae injected with E. coli and its nucleotide sequence was determined by the RACE-PCR. It has an open reading frame of 414 bp nucleotides corresponding to 138 amino acids including a signal sequence of 18 amino acids. The estimated molecular weight and the isoelectric point of the lysozyme II without the signal peptide were 13,649.38 Da and 9.11, respectively. The A. rapae lysozyme II (ARL II) showed the highest identity (81%) in the amino acid sequence to Manduca sexta lysozyme among other lepidopteran species. The two catalytic residues ($Glu^{32}$ and $Asp^{50}$) and the eight Cys residue motifs, which are highly conserved among other c-type lysozymes in invertebrates and vertebrates, are also completely conserved. A phylogenetic analysis based on amino acid sequences indicated that the ARL II was more closely related to M. sexta, Hyphantria cunea, Heliothis virescens, and Trichoplusia ni lysozymes. The ARL II gene was expressed in Spodoptera frugiperda 21 insect cells and the recombinant ARL II (rARL II) was purified from cell-conditioned media by cation exchange column chromatography and reverse phase FPLC. The purified rARL II was able to form a clear zone in lysoplate assay against Micrococcus luteus. The lytic activity was estimated to be 511.41 U/mg, 1.53 times higher than that of the chicken lysozyme. The optimum temperature for the lytic activity of the rARL II was $50^{\circ}C$, the temperature dependency of the absolute lytic activity of rARL II was higher than that of the chicken lysozyme at low temperatures under $65^{\circ}C$.

Single Nucleotide Polymorphism in the Coding Region of Bovine Chemerin Gene and Their Associations with Carcass Traits in Japanese Black Cattle