DOI QR코드

DOI QR Code

Components of human breast milk: from macronutrient to microbiome and microRNA

  • Kim, Su Yeong (Department of Pediatrics, Chung-Ang University Hospital) ;
  • Yi, Dae Yong (Department of Pediatrics, Chung-Ang University Hospital)
  • Received : 2020.01.07
  • Accepted : 2020.03.19
  • Published : 2020.08.15

Abstract

Human breast milk (HBM) is essential for the infant's growth and development right after birth and is an irreplaceable source of nutrition for early human survival. Various infant formulas have many similarities to HBM in many components, but there is no perfect substitute for HBM. Recently, various breast milk components and their roles have been studied according to the development of various analysis techniques. As is already well known, HBM contains about 87%-88% water, and 124-g/L solid components as macronutrients, including about 7% (60-70 g/L) carbohydrates, 1% (8-10 g/L) protein, and 3.8% (35-40 g/L) fat. The composition may vary depending on the environmental factors, including maternal diet. Colostrum is low in fat but high in protein and relatively rich in immuneprotective components. Although HBM contains enough vitamins to ensure normal growth of the infant, vitamins D and K may be insufficient, and the infant may require their supplementation. Growth factors in HBM also serve as various bioactive proteins and peptides on the intestinal tract, vasculature, nervous system, and endocrine system. In the past, HBM of a healthy mother was thought to be sterile. However, several subsequent studies have confirmed the presence of rich and diverse microbial communities in HBM. Some studies suggested that the genera Staphylococcus and Streptococcus may be universally predominant in HBM, but the origin of microbiota still remains controversial. Lastly, milk is the one of most abundant body fluid of microRNAs, which are known to play a role in various functions, such as immunoprotection and developmental programming, through delivering from HBM and absorption by intestinal epithelial cells. In conclusion, HBM is the most important source of nutrition for infants and includes microbiomes and miRNAs for growth, development, and immunity.

Keywords

References

  1. Van Rossum CT, Buchner FL, Hoekstra J. Quantification of health effects of breastfeeding: review of the literature and model simulation. Bilthoven: RIVM; 2006.
  2. ESPGHAN Committee on Nutrition, Agostoni C, Braegger C, Decsi T, Kolacek S, Koletzko B, et al. Breast-feeding: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2009;49:112-25. https://doi.org/10.1097/MPG.0b013e31819f1e05
  3. World Health Organization, United Nations Children's Fund. Global strategy for infant and young child feeding. Geneva: World Health organization; 2003.
  4. Ip S, Chung M, Raman G, Chew P, Magula N, DeVine D, et al. Breastfeeding and maternal and infant health outcomes in developed countries. Evid Rep Technol Assess (Full Rep) 2007;153:1-186.
  5. Johnston M, Landers S, Noble L, Szucs K, Viehmann L. Breastfeeding and the use of human milk. Pediatrics. 2012;129:e827-41. https://doi.org/10.1542/peds.2011-3552
  6. Vandenplas Y, Berger B, Carnielli VP, Ksiazyk J, Lagstrom H, Sanchez Luna M, et al. Human milk oligosaccharides: 2'-fucosyllactose (2'-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients 2018;10:1161. https://doi.org/10.3390/nu10091161
  7. Hegar B, Wibowo Y, Basrowi RW, Ranuh RG, Sudarmo SM, Munasir Z, et al. The role of two human milk oligosaccharides, 2'-fucosyllactose and lacto-N-neotetraose, in infant nutrition. Pediatr Gastroenterol Hepatol Nutr 2019;22:330-40. https://doi.org/10.5223/pghn.2019.22.4.330
  8. Koletzko B, Baker S, Cleghorn G, Nete U.F, Gopalan F, Hernall O, et al. Global standard for the composition of infant formula: Recommendations of an ESPGHAN coordinated internation expert group. J Pediatr Gastroenteral Nutr 2005;41:584-99. https://doi.org/10.1097/01.mpg.0000187817.38836.42
  9. Cook DA. Nutrient levels in infant formulas: Technical considerations. J Nutr 1989;119:1773-7. https://doi.org/10.1093/jn/119.suppl_12.1773
  10. Riordan J, Wambach K. Breastfeeding and human lactation. 4th ed. Burlington (NJ): Jones & Bartlett Learning, 2016.
  11. Guo M. Human milk biochemistry and infant formula manufacturing technology. Cambridge: Elsevier, 2014.
  12. Kunz C, Rodriguez-Palmero M, Koletzko B, Jensen R. Nutritional and biochemical properties of human milk, part I: general aspects, proteins, and carbohydrates. Clin Perinatol 1999;26:307-33. https://doi.org/10.1016/S0095-5108(18)30055-1
  13. Picciano MF. Nutrient composition of human milk. Pediatr Clin North Am 2001;48:53-67. https://doi.org/10.1016/s0031-3955(05)70285-6
  14. Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am 2013;60:49-74. https://doi.org/10.1016/j.pcl.2012.10.002
  15. Martin CR, Ling PR, Blackburn GL. Review of infant feeding: key features of breast milk and infant formula. Nutrients 2016;8:279. https://doi.org/10.3390/nu8050279
  16. Lonnerdal, B. Preclinical assessment of infant formula. Am Nutr Metab 2012;60:196-9. https://doi.org/10.1159/000338209
  17. Underwood MA. Human milk for the premature infant. Pediatr Clin North Am 2013;60:189-207. https://doi.org/10.1016/j.pcl.2012.09.008
  18. Kim MH, Shim KS, Yi DY, Lim IS, Chae SA, Yun SW, et al. Macronutrient analysis of human milk according to storage and processing in Korean mother. Pediatr Gastroenterol Hepatol Nutr 2019;22:262-9. https://doi.org/10.5223/pghn.2019.22.3.262
  19. Chang YC, Chen CH, Lin MC. The macronutrients in human milk change after storage in various containers. Pediatr Neonatol 2012;53:205-9. https://doi.org/10.1016/j.pedneo.2012.04.009
  20. Flint HJ. The impact of nutrition on the human microbiome. Nutr Rev 2012;70 Suppl 1:S10-3. https://doi.org/10.1111/j.1753-4887.2012.00499.x
  21. Brownawell AM, Caers W, Gibson GR, Kendall CW, Lewis KD, Ringel Y, et al. Prebiotics and the health benefits of fiber: current regulatory status, future research, and goals. J Nutr 2012;142:962-74. https://doi.org/10.3945/jn.112.158147
  22. Hester SN, Hustead DS, Mackey AD, Singhal A, Marriage BJ. Is the macronutrient intake of formula-fed infants greater than breast-fed infants in early infancy? J Nutr Metab 2012;2012:891201. https://doi.org/10.1155/2012/891201
  23. Arthur PG, Kent JC, Hartmann PE. Metabolites of lactose synthesis in milk from women during established lactation. J Pediatr Gastroenterol Nutr 1991;13:260-6. https://doi.org/10.1097/00005176-199110000-00004
  24. Thurl S, Munzert M, Boehm G, Matthews C, Stahl B. Systematic review of the concentrations of oligosaccharides in human milk. Nutr Rev 2017;75:920-33. https://doi.org/10.1093/nutrit/nux044
  25. Andreas NJ, Kampmann B, Mehring Le-Doare K. Human breast milk: a review on its composition and bioactivity. Early Hum Dev 2015;91:629-35. https://doi.org/10.1016/j.earlhumdev.2015.08.013
  26. Bode, L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 2012;22:1147-2. https://doi.org/10.1093/glycob/cws074
  27. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 2011;5:220-30. https://doi.org/10.1038/ismej.2010.118
  28. Plaza-Diaz J, Fontana L, Gil A. Human milk oligosaccharides and immune system development. Nutrients 2018;10(8):1038. https://doi.org/10.3390/nu10081038
  29. Gyorgy P, Norris RF, Rose CS. Bifidus factor. I. A variant of Lactobacillus bifidus requiring a special growth factor. Arch Biochem Biophys 1954;48:193-201. https://doi.org/10.1016/0003-9861(54)90323-9
  30. Ward RE, Ninonuevo M, Mills DA, Lebrilla CB, German JB. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl Environ Microbiol 2006;72:4497-9. https://doi.org/10.1128/AEM.02515-05
  31. Ward RE, Ninonuevo M, Mills DA, Lebrilla CB, German JB. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Mol Nutr Food Res 2007;51:1398-405. https://doi.org/10.1002/mnfr.200700150
  32. Garrido D, Ruiz-Moyano S, Jimenez-Espinoza R, Eom HJ, Block DE, Mills DA. Utilization of galactooligosaccharides by Bifidobacterium longum subsp. infantis isolates. Food Microbiol 2013;33:262-70. https://doi.org/10.1016/j.fm.2012.10.003
  33. LoCascio RG, Ninonuevo MR, Freeman SL, Sela DA, Grimm R, Lebrilla CB, et al. Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. J Agric Food Chem 2007;55:8914-9. https://doi.org/10.1021/jf071048
  34. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 2000;30:61-7. https://doi.org/10.1097/00005176-200001000-00019
  35. Liao Y, Weber D, Xu W, Durbin-Johnson BP, Phinney BS, Lonnerdal B. Absolute Quantification of human milk caseins and the whey/casein ratio during the first year of lactation. J Proteome Res 2017;16:4113-21. https://doi.org/10.1021/acs.jproteome.7b00486
  36. Rudloff S, Kunz C. Protein and nonprotein nitrogen components in human milk, bovine milk, and infant formula: quantitative and qualitative aspects in infant nutrition. J Pediatr Gastroenterol Nutr 1997;24:328-44. https://doi.org/10.1097/00005176-199703000-00017
  37. Lonnerdal B, Woodhouse LR, Glazier C. Compartmentalization and quantitation of protein in human milk. J Nutr 1987;117:1385-95. https://doi.org/10.1093/jn/117.8.1385
  38. Lonnerdal B, Lien EL. Nutritional and physiologic significance of alphalactalbumin in infants. Nutr Rev 2003;61:295-305. https://doi.org/10.1301/nr.2003.sept.295-305
  39. Donovan SM, Lonnerdal B. Non-protein nitrogen and true protein in infant formulas. Acta Paediatr Scand 1989;78:497-504. https://doi.org/10.1111/j.1651-2227.1989.tb17927.x
  40. Saarela T, Kokkonen J, Koivisto M. Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatr 2005;94:1176-81. https://doi.org/10.1111/j.1651-2227.2005.tb02070.x
  41. Straarup EM, Lauritzen L, Faerk J, Hoy Deceased CE, Michaelsen KF. The stereospecific triacylglycerol structures and Fatty Acid profiles of human milk and infant formulas. J Pediatr Gastroenterol Nutr 2006;42:293-9. https://doi.org/10.1097/01.mpg.0000214155.51036.4f
  42. Innis SM, King DJ. Trans Fatty acids in human milk are inversely associated with concentrations of essential all-cis n-6 and n-3 fatty acids and determine trans, but not n-6 and n-3, fatty acids in plasma lipids of breast-fed infants. Am J Clin Nutr 1999;70:383-90. https://doi.org/10.1093/ajcn/70.3.383
  43. Decsi T. Nutritional relevance of trans isomeric fatty acids in human milk. Acta Paediatr 2003;92:1369-71. https://doi.org/10.1080/08035250310007565
  44. Del Prado M, Villalpando S, Elizondo A, Rodriguez M, Demmelmair H, Koletzko B. Contribution of dietary and newly formed arachidonic acid to human milk lipids in women eating a low-fat diet. Am J Clin Nutr 2001;74:242-7. https://doi.org/10.1093/ajcn/74.2.242
  45. Weseler AR, Dirix CE, Bruins MJ, Hornstra G. Dietary arachidonic acid dose-dependency increases with arachidonic acid concetration in human milk. J Nutr 2008;138:2190-7. https://doi.org/10.3945/jn.108.089318
  46. Jensen CL, Maude M, Anderson RE, Heird WC. Effect of docosahexaenoic acid supplementation of lactating women on the fatty acid composition of breast milk lipids and maternal and infant plasma phospholipids. Am J Clin Nutr 2000;71(1 Suppl):292S-299S. https://doi.org/10.1093/ajcn/71.1.292s
  47. Fleith M, Clandinin MT. Dietary PUFA for preterm and term infants: review of clinical studies. Crit Rev Food Sci Nutr 2005;45:205-29. https://doi.org/10.1080/10408690590956378
  48. Perrine CG, Sharma AJ, Jefferds ME, Serdula MK, Scanlon KS. Adherence to vitamin D recommendations among US infants. Pediatrics 2010;125:627-32. https://doi.org/10.1542/peds.2009-2571
  49. Ministry of Health and Welfare (KR). The Korean Nutrition Society. Dietary reference intakes for Koreans 2015. Sejong (Korea): Ministry of Health and Welfare, 2016.
  50. American Academy of Pediatrics Committee on Fetus and Newborn. Controversies concerning vitamin K and the newborn. American Academy of Pediatrics Committee on Fetus and Newborn. Pediatrics 2003;112:191-2.
  51. Sneed SM, Zane C, Thomas MR. The effects of ascorbic acid, vitamin B6, vitamin B12, and folic acid supplementation on the breast milk and maternal nutritional status of low socioeconomic lactating women. Am J Clin Nutr 1981;34:1338-46. https://doi.org/10.1093/ajcn/34.7.1338
  52. Parr RM, DeMaeyer EM, Iyengar VG, Byrne AR, Kirkbright GF, Schoch G, et al. Minor and trace elements in human milk from Guatemala, Hungary, Nigeria, Philippines, Sweden, and Zaire. Results from a WHO/IAEA joint project. Biol Trace Elem Res 1991;29:51-75. https://doi.org/10.1007/BF03032674
  53. Domellof M, Lonnerdal B, Dewey KG, Cohen RJ, Hernell O. Iron, zinc, and copper concentrations in breast milk are independent of maternal mineral status. Am J Clin Nutr 2004;79:111-5. https://doi.org/10.1093/ajcn/79.1.111
  54. Innis SM. Impact of maternal diet on human milk composition and neurological development of infants. Am J Clin Nutr 2014;99:734S-741S https://doi.org/10.3945/ajcn.113.072595
  55. Martin CR, Dasilva DA, Cluette-Brown JE, Dimonda C, Hamill A, Bhutta AQ, et al. Decreased postnatal docsahexaenoic and arachidonic acid blood levels in premature infants are associated with neonatal morbidities. J Pediatr 2011;159:743-9. https://doi.org/10.1016/j.jpeds.2011.04.039
  56. de Figueiredo CS, Palhares DB, Melnikov P, Moura AJ, dos Santos SC. Zinc and copper concentrations in human preterm milk. Biol Trace Elem Res 2010;136:1-7. https://doi.org/10.1007/s12011-009-8515-6
  57. O'Brien CE, Krebs NF, Westcott JL, Dong F. Relationships among plasma zinc, plasma prolactin, milk transfer, and milk zinc in lactating women. J Hum Lact 2007;23:179-83. https://doi.org/10.1177/0890334407300021
  58. Gabrielli O, Zampini L, Galeazzi T, Padella L, Santoro L, Peila C, et al. Preterm milk oligosaccharides during the first month of lactation. Pediatrics 2011;128:e1520-31. https://doi.org/10.1542/peds.2011-1206
  59. De Leoz ML, Gaerlan SC, Strum JS, Dimapasoc LM, Mirmiran M, Tancredi DJ, et al. Lacto-N-tetraose, fucosylation, and secretor status are highly variable in human milk oligosaccharides from women delivering preterm. J Proteome Res 2012;11:4662-72. https://doi.org/10.1021/pr3004979
  60. Donovan SM. Role of human milk components in gastrointestinal development: current knowledge and future NEEDS. J Pediatr 2006:149(suppl 5):S49-61. https://doi.org/10.1016/j.jpeds.2006.06.052
  61. Dvorak B, Fituch CC, Williams CS, Hurst NM, Schanler RJ. Increased epidermal growth factor levels in human milk of mothers with extremely premature infants. Pediatr Res 2003;54:15-9. https://doi.org/10.1203/01.PDR.0000065729.74325.71
  62. Rodrigues D, Li A, Nair D, Blennerhassett M. Glial cell line-derived neurotrophic factor is a key neurotrophin in the postnatal enteric nervous system. Neurogastroenterol Motil 2011;23:e44-56. https://doi.org/10.1111/j.1365-2982.2010.01626.x
  63. Li R, Xia W, Zhang Z, Wu K. S100B protein, brain-derived neurotrophic factor, and glial cell linederived neurotrophic factor in human milk. PloS One 2011;6:e21663. https://doi.org/10.1371/journal.pone.0021663
  64. Fichter M, Klotz M, Hirschberg DL, Waldura B, Schofer O, Ehnert S, et al. Breast milk contains relevant neurotrophic factors and cytokines for enteric nervous system development. Mol Nutr Food Res 2011;55:1592-6. https://doi.org/10.1002/mnfr.201100124
  65. Li R, Xia W, Zhang A, Wu K. S100B protein, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in human milk. PloS One 2011'6:e21663. https://doi.org/10.1371/journal.pone.0021663
  66. Gazzolo D, Bruschettini M, Lituania M, Serra G, Santini P, Michetti F. Levels of S100B protein are higher in mature human milk than in colostrum and milk-formulae milks. Clin Nutr 2004;23:23-6. https://doi.org/10.1016/S0261-5614(03)00084-0
  67. Milsom SR, Blum WF, Gunn AJ. Temporal changes in insulin-like growth factors I and II and in insulin-like growth factor binding proteins 1, 2, and 3 in human milk. Horm Res 2008; 69:307-1. https://doi.org/10.1159/000114863
  68. Prosser CG. Insulin-like growth factors in milk and mammary gland. J Mammary Gland Biol Neoplasia 1996;1:297-306. https://doi.org/10.1007/BF02018082
  69. Elmlinger MW, Hochhaus F, Loui A, Frommer KW, Obladen M, Ranke MB. Insulin-like growth factors and binding proteins in early milk from mothers of preterm and term infants. Horm Res 2007;68:124-31. https://doi.org/10.1159/000100488
  70. Philipps AF, Kling PJ, Grille JG, Dvorak B. Intestinal transport of insulinlike growth factor-I (igf-I) in the suckling rat. J Pediatr Gastroenterol Nutr 2002;35:539-44. https://doi.org/10.1097/00005176-200210000-00015
  71. Philipps AF, Dvorak B, Kling PJ, Grille JG, Koldovsky O. Absorption of milk-borne insulin-like growth factor-I into portal blood of sucklin rats. J Pediatr Gastroenterol Nutr 2000;31:128-35. https://doi.org/10.1097/00005176-200008000-00008
  72. Kling PJ, Taing KM, Dvorak B, Woodward SS, Philipps AF. Insulin-like growth factor-I stimulates erythropoiesis when administered enterally. Growth Factors 2006;24:218-23. https://doi.org/10.1080/08977190600783162
  73. DiBiasie A. Evidence-based review of retinopathy of prematurity prevenion in VLBW and ELBW Infants. Neonat Network 2006;25:393-403. https://doi.org/10.1891/0730-0832.25.6.393
  74. Loui A, Eilers E, Strauss E, Pohl-Schickinger A, Obladen M, Koehne P. Vascular endothelial growth factor (VEGF) and soluble VEGF Receptor 1 (Sflt-1) levels in early and mature human milk from mothers of preterm versus term infants. J Hum Lact 2012;28:522-8. https://doi.org/10.1177/0890334412447686
  75. Soubasi V, Kremenopoulos G, Diamanti E, Tsantali C, Sarafidis K, Tsakiris D. Follow-up of very low birth weight infants after erythropoietin treatment to prevent anemia of prematurity. J Pediatr 1995;127:291-7. https://doi.org/10.1016/S0022-3476(95)70313-6
  76. Pasha YZ, Ahmadpour-Kacho M, Hajiahmadi M, Hosseini M. Enteral erythropoietin increases plasma erythropoietin level in preterm infants: a randomized controlled trial. Indian Pediatr 2008;45:25-8.
  77. Claud EC, Savidge T, Walker WA. Modulation of human intestinal epithelial cell IL-8 secretion by human milk factors. Pediatr Res 2003;53:419-25. https://doi.org/10.1203/01.PDR.0000050141.73528.AD
  78. Newburg DS, Woo JG, Morrow AL. Characteristics and potential functions of human milk adiponectin. J Pediatr 2010;156:S41-6. https://doi.org/10.1016/j.jpeds.2009.11.020
  79. Martin LJ, Woo JG, Geraghty SR, Altaye M, Davidson BS, Banach W, et al. Adiponectin is present in human milk and is associated with maternal factors. Am J Clin Nutr 2006;83:1106-11. https://doi.org/10.1093/ajcn/83.5.1106
  80. Civardi E, Garofoli F, Tzialla C, Paolillo P, Bollani L, Stronati M. Microorganisms in human milk: lights and shadows. J Matern Fetal Neonatal Med 2013;26 Suppl 2:30-4. https://doi.org/10.3109/14767058.2013.829693
  81. Martin R, Langa S, Reviriego C, Jiminez E, Marin ML, Xaus J, et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 2003;143:754-8. https://doi.org/10.1016/j.jpeds.2003.09.028
  82. Heikkila MP, Saris PE. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol 2003;95:471-8. https://doi.org/10.1046/j.1365-2672.2003.02002.x
  83. Collado MC, Delgado S, Maldonado A, Rodriguez JM. Assessment of the bacterial diversity of breast milk of healthy women by quantitative realtime PCR. Lett Appl Microbiol 2009;48:523-8. https://doi.org/10.1111/j.1472-765X.2009.02567.x
  84. Martin R, Jimenez E, Heilig H, Fernandez L, Marin ML, Zoetendal EG, et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 2009;75:965-9. https://doi.org/10.1128/AEM.02063-08
  85. Hunt KM, Foster JA, Forney LJ, Schutte UM, Beck DL, Abdo Z, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One 2011;6:e21313. https://doi.org/10.1371/journal.pone.0021313
  86. Jost T, Lacroix C, Braegger C, Chassard C. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br J Nutr 2013;110:1253-62. https://doi.org/10.1017/S0007114513000597
  87. Fitzstevens JL, Smith KC, Hagadorn JI, Caimano MJ, Matson AP, Brownell EA. Systematic Review of the Human Milk Microbiota. Nutr Clin Pract 2017;32:354-64. https://doi.org/10.1177/0884533616670150
  88. Asnicar F, Manara S, Zolfo M, Truong DT, Scholz M, Armanini F, et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems 2017;2:e00164-16.
  89. Jimenez E, de Andres J, Manrique M, Pareja-Tobes P, Tobes R, Martinez-Blanch JF, et al. Metagenomic analysis of milk of healthy and mastitissuffering women. J Hum Lact 2015;31:406-15. https://doi.org/10.1177/0890334415585078
  90. Urbaniak C, Angelini M, Gloor GB, Reid G. Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome 2016;4:1. https://doi.org/10.1186/s40168-015-0145-y
  91. Togo A, Dufour JC, Lagier JC, Dubourg G, Raoult D, Million M. Repertoire of human breast and milk microbiota: a systematic review. Future Microbiol 2019;14:623-41. https://doi.org/10.2217/fmb-2018-0317
  92. Rodriguez JM. The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv Nutr 2014;5:779-84. https://doi.org/10.3945/an.114.007229
  93. Urbaniak C, Cummins J, Brackstone M, Macklaim JM, Gloor GB, Baban CK, et al. Microbiota of human breast tissue. Appl Environ Microbiol 2014;80:3007-14. https://doi.org/10.1128/AEM.00242-14
  94. Ramsay DT, Kent JC, Owens RA, Hartmann PE. Ultrasound imaging of milk ejection in the breast of lactating women. Pediatrics 2004;113:361-7. https://doi.org/10.1542/peds.113.2.361
  95. Solis G, de Los Reyes-Gavilan CG, Fernandez N, Margolles A, Gueimonde M. Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe 2010;16:307-10. https://doi.org/10.1016/j.anaerobe.2010.02.004
  96. Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C. Vertical motherneonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol 2014;16:2891-904. https://doi.org/10.1111/1462-2920.12238
  97. Murphy K, Curley D, O'Callaghan TF, O'Shea CA, Dempsey EM, O'Toole PW, et al. The composition of human milk and infant faecal microbiota over the first three months of life: a pilot study. Sci Rep 2017;7:40597. https://doi.org/10.1038/srep40597
  98. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11. https://doi.org/10.1038/35888
  99. Grunweller A, Hartmann RK. RNA interference as a gene-specific approach for molecular medicine. Curr Med Chem 2005;12:3143-61. https://doi.org/10.2174/092986705774933489
  100. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33. https://doi.org/10.1016/j.cell.2009.01.002
  101. Wang Z. MicroRNA: a matter of life or death. World J Biol Chem 2010;1:41-54. https://doi.org/10.4331/wjbc.v1.i4.41
  102. Kosaka N, Izumi H, Sekine K, Ochiya T. microRNA as a new immuneregulatory agent in breast milk. Silence 2010;1:7. https://doi.org/10.1186/1758-907X-1-7
  103. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010;56:1733-41. https://doi.org/10.1373/clinchem.2010.147405
  104. Melnik BC, Schmitz G. MicroRNAs: milk's epigenetic regulators. Best Pract Res Clin Endocrinol Metab 2017;31:427-42. https://doi.org/10.1016/j.beem.2017.10.003
  105. Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Q, et al. Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci 2012;8:118-23. https://doi.org/10.7150/ijbs.8.118
  106. Alsaweed M, Lai CT, Hartmann PE, Geddes DT, Kakulas F. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk. Sci Rep 2016;6:20680. https://doi.org/10.1038/srep20680
  107. Alsaweed M, Hartmann PE, Geddes DT, Kakulas F. MicroRNAs in breastmilk and the lactating breast: potential immunoprotectors and developmental regulators for the infant and the mother. Int J Environ Res Public Health 2015;12:13981-4020. https://doi.org/10.3390/ijerph121113981

Cited by

  1. Pivotal roles of prolactin and other hormones in lactogenesis and the nutritional composition of human milk vol.63, pp.8, 2020, https://doi.org/10.3345/cep.2020.00311
  2. Analysis of the human breast milk microbiome and bacterial extracellular vesicles in healthy mothers vol.52, pp.8, 2020, https://doi.org/10.1038/s12276-020-0470-5
  3. More than Nutrition: Therapeutic Potential of Breast Milk-Derived Exosomes in Cancer vol.21, pp.19, 2020, https://doi.org/10.3390/ijms21197327
  4. Circulating microRNAs in Breast Milk and Their Potential Impact on the Infant vol.12, pp.10, 2020, https://doi.org/10.3390/nu12103066
  5. Compositional and Functional Comparisons of the Microbiota in the Colostrum and Mature Milk of Dairy Goats vol.10, pp.11, 2020, https://doi.org/10.3390/ani10111955
  6. Editorial: Impact of Early Life Nutrition on Immune System Development and Related Health Outcomes in Later Life vol.12, 2020, https://doi.org/10.3389/fimmu.2021.668569
  7. The Triad Mother-Breast Milk-Infant as Predictor of Future Health: A Narrative Review vol.13, pp.2, 2021, https://doi.org/10.3390/nu13020486
  8. Immunomodulatory Effects of Human Colostrum and Milk vol.24, pp.4, 2020, https://doi.org/10.5223/pghn.2021.24.4.337
  9. Potential Benefits of Bovine Colostrum in Pediatric Nutrition and Health vol.13, pp.8, 2020, https://doi.org/10.3390/nu13082551
  10. Human Breast Milk Composition and Function in Human Health: From Nutritional Components to Microbiome and MicroRNAs vol.13, pp.9, 2020, https://doi.org/10.3390/nu13093094
  11. Breastfeeding Practices and Determinant Factors of Exclusive Breastfeeding among Mothers of Children Aged 0-23 Months in Northwestern Romania vol.13, pp.11, 2021, https://doi.org/10.3390/nu13113998
  12. Maternal aspects of home based newborn care (HBNC) practices in rural areas of Uttarakhand, India: A cross-sectional study vol.28, pp.1, 2020, https://doi.org/10.1016/j.jnn.2021.07.001