• 제목/요약/키워드: Faster r-cnn

검색결과 90건 처리시간 0.019초

Recognition of Car Manufacturers using Faster R-CNN and Perspective Transformation

  • Ansari, Israfil;Lee, Yeunghak;Jeong, Yunju;Shim, Jaechang
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.888-896
    • /
    • 2018
  • In this paper, we report detection and recognition of vehicle logo from images captured from street CCTV. Image data includes both the front and rear view of the vehicles. The proposed method is a two-step process which combines image preprocessing and faster region-based convolutional neural network (R-CNN) for logo recognition. Without preprocessing, faster R-CNN accuracy is high only if the image quality is good. The proposed system is focusing on street CCTV camera where image quality is different from a front facing camera. Using perspective transformation the top view images are transformed into front view images. In this system, the detection and accuracy are much higher as compared to the existing algorithm. As a result of the experiment, on day data the detection and recognition rate is improved by 2% and night data, detection rate improved by 14%.

적외선 카메라 영상에서의 마스크 R-CNN기반 발열객체검출 (Object Detection based on Mask R-CNN from Infrared Camera)

  • 송현철;강민식;김태은
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권6호
    • /
    • pp.1213-1218
    • /
    • 2018
  • 최근 비전분야에 소개된 Mask R-CNN은 객체 인스턴스 세분화를위한 개념적으로 간단하고 유연하며 일반적인 프레임 워크를 제시한다. 이 논문에서는 열적외선 카메라로부터 획득한 열감지영상에서 발열체인 인스턴스에 대해 발열부위의 세그멘테이션 마스크를 생성하는 동시에 이미지 내의 오브젝트 발열부분을 효율적으로 탐색하는 알고리즘을 제안한다. Mask R-CNN 기법은 바운딩 박스 인식을 위해 기존 브랜치와 병렬로 객체 마스크를 예측하기 위한 브랜치를 추가함으로써 Faster R-CNN을 확장한 알고리즘이다. Mask R-CNN은 훈련이 간단하고 빠르게 실행하는 고속 R-CNN에 추가된다. 더욱이, Mask R-CNN은 다른 작업으로 일반화하기 용이하다. 본 연구에서는 이 R-CNN기반 적외선 영상 검출알고리즘을 제안하여 RGB영상에서 구별할 수 없는 발열체를 탐지하였다. 실험결과 Mask R-CNN에서 변별하지 못하는 발열객체를 성공적으로 검출하였다.

고추 작물의 정밀 질병 진단을 위한 딥러닝 모델 통합 연구: YOLOv8, ResNet50, Faster R-CNN의 성능 분석 (Integrated Deep Learning Models for Precise Disease Diagnosis in Pepper Crops: Performance Analysis of YOLOv8, ResNet50, and Faster R-CNN)

  • 서지인;심현
    • 한국전자통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.791-798
    • /
    • 2024
  • 본 연구의 목적은 YOLOv8, ResNet50, Faster R-CNN 모델을 활용하여 고추 작물의 질병을 진단하고, 각 모델의 성능을 비교하는 것이다. 첫 번째 모델은 YOLOv8을 사용하여 질병을 진단하였고, 두 번째 모델은 ResNet50을 단독으로 사용하였다. 세 번째 모델은 YOLOv8과 ResNet50을 결합하여 질병을 진단하였으며, 네 번째 모델은 Faster R-CNN을 사용하여 질병을 진단하였다. 각 모델의 성능은 정확도, 정밀도, 재현율, F1-Score 지표로 평가된다. 연구 결과, YOLOv8과 ResNet50을 결합한 모델이 가장 높은 성능을 보였으며, YOLOv8 단독 모델도 높은 성능을 나타냈다.

인공 위성 사진 내 선박 탐지 정확도 향상을 위한 Watershed 알고리즘 기반 RoI 축소 기법 (Watershed Algorithm-Based RoI Reduction Techniques for Improving Ship Detection Accuracy in Satellite Imagery)

  • 이승재;윤지원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권8호
    • /
    • pp.311-318
    • /
    • 2021
  • 해상 안보, 국제 동향 파악 등 다양한 이유로 해상 사진에서 선박을 탐지하고자하는 연구는 지속되어 왔다. 인공지능의 발달로 인해 사진 및 영상 내 객체 탐지를 위한 R-CNN 모델이 등장하였고 객체탐지의 성능이 비약적으로 상승하였다. R-CNN 모델을 이용한 해상 사진에서의 선박 탐지는 인공위성 사진에도 적용되기 시작하였다. 하지만 인공위성 사진은 넓은 지역을 투사하기 때문에 선박 외에도 차량, 지형, 건물 등 다양한 객체들이 선박으로 인식되는 경우가 있다. 본 논문에서는 R-CNN계열 모델을 이용한 인공위성 사진에서의 선박 탐지의 성능을 개선하기 위한 새로운 방법론을 제안한다. 표지자 기반 watershed 알고리즘을 통해 육지와 바다를 분리하고 morphology 연산을 수행하여 RoI를 한 차례 더 특정한 뒤 특정된 RoI에 R-CNN 계열 모델을 사용하여 선박을 탐지하여 오탐을 줄인다. 해당 방법을 이용하여 Faster R-CNN을 사용하였을 경우, Faster R-CNN만을 사용했을 때에 비해 오탐률을 80% 줄일 수 있었다.

복부 CT 영상에서 밝기값 정규화 및 Faster R-CNN을 이용한 자동 췌장 검출 (Automatic Pancreas Detection on Abdominal CT Images using Intensity Normalization and Faster R-CNN)

  • 최시은;이성은;홍헬렌
    • 한국멀티미디어학회논문지
    • /
    • 제24권3호
    • /
    • pp.396-405
    • /
    • 2021
  • In surgery to remove pancreatic cancer, it is important to figure out the shape of a patient's pancreas. However, previous studies have a limit to detect a pancreas automatically in abdominal CT images, because the pancreas varies in shape, size and location by patient. Therefore, in this paper, we propose a method of learning various shapes of pancreas according to the patients and adjacent slices using Faster R-CNN based on Inception V2, and automatically detecting the pancreas from abdominal CT images. Model training and testing were performed using the NIH Pancreas-CT Dataset, and intensity normalization was applied to all data to improve pancreatic detection accuracy. Additionally, according to the shape of the pancreas, the test dataset was classified into top, middle, and bottom slices to evaluate the model's performance on each data. The results show that the top data's mAP@.50IoU achieved 91.7% and the bottom data's mAP@.50IoU achieved 95.4%, and the highest performance was the middle data's mAP@.50IoU, 98.5%. Thus, we have confirmed that the model can accurately detect the pancreas in CT images.

Activity Object Detection Based on Improved Faster R-CNN

  • Zhang, Ning;Feng, Yiran;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제24권3호
    • /
    • pp.416-422
    • /
    • 2021
  • Due to the large differences in human activity within classes, the large similarity between classes, and the problems of visual angle and occlusion, it is difficult to extract features manually, and the detection rate of human behavior is low. In order to better solve these problems, an improved Faster R-CNN-based detection algorithm is proposed in this paper. It achieves multi-object recognition and localization through a second-order detection network, and replaces the original feature extraction module with Dense-Net, which can fuse multi-level feature information, increase network depth and avoid disappearance of network gradients. Meanwhile, the proposal merging strategy is improved with Soft-NMS, where an attenuation function is designed to replace the conventional NMS algorithm, thereby avoiding missed detection of adjacent or overlapping objects, and enhancing the network detection accuracy under multiple objects. During the experiment, the improved Faster R-CNN method in this article has 84.7% target detection result, which is improved compared to other methods, which proves that the target recognition method has significant advantages and potential.

치매 진단을 위한 Faster R-CNN 활용 MRI 바이오마커 자동 검출 연동 분류 기술 개발 (Alzheimer's Disease Classification with Automated MRI Biomarker Detection Using Faster R-CNN for Alzheimer's Disease Diagnosis)

  • 손주형;김경태;최재영
    • 한국멀티미디어학회논문지
    • /
    • 제22권10호
    • /
    • pp.1168-1177
    • /
    • 2019
  • In order to diagnose and prevent Alzheimer's Disease (AD), it is becoming increasingly important to develop a CAD(Computer-aided Diagnosis) system for AD diagnosis, which provides effective treatment for patients by analyzing 3D MRI images. It is essential to apply powerful deep learning algorithms in order to automatically classify stages of Alzheimer's Disease and to develop a Alzheimer's Disease support diagnosis system that has the function of detecting hippocampus and CSF(Cerebrospinal fluid) which are important biomarkers in diagnosis of Alzheimer's Disease. In this paper, for AD diagnosis, we classify a given MRI data into three categories of AD, mild cognitive impairment, and normal control according by applying 3D brain MRI image to the Faster R-CNN model and detect hippocampus and CSF in MRI image. To do this, we use the 2D MRI slice images extracted from the 3D MRI data of the Faster R-CNN, and perform the widely used majority voting algorithm on the resulting bounding box labels for classification. To verify the proposed method, we used the public ADNI data set, which is the standard brain MRI database. Experimental results show that the proposed method achieves impressive classification performance compared with other state-of-the-art methods.

Faster R-CNN과 이미지 오그멘테이션 기법을 이용한 화염감지에 관한 연구 (A Study on Flame Detection using Faster R-CNN and Image Augmentation Techniques)

  • 김재중;류진규;곽동걸;변선준
    • 전기전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.1079-1087
    • /
    • 2018
  • 최근 딥러닝(deep learning) 인공지능 기반의 컴퓨터 비전 분야는 각종 영상분석 분야에서 화제로 떠오르고 있다. 본 연구에서는 딥러닝 기반의 여러 이미지 인식 알고리즘 중 이미지 내에서 객체를 검출하는 데 사용되는 Faster R-CNN 알고리즘을 이용하여 화재 이미지에서 불꽃을 검출하고자 한다. 학습 과정에서 소량의 데이터셋을 통한 화재검출 정확도 향상을 위해 이미지 오그멘테이션(image augmentation) 기법을 이용하고, 이미지 오그멘테이션을 6가지 유형별로 나누어 학습하여 정확도, 정밀도, 검출률을 비교하였다. 그 결과, 이미지 오그멘테이션의 종류가 늘어날수록 검출률이 상승하지만, 다른 객체 검출 모델들의 일반적인 정확도와 검출률의 관계와 마찬가지로 오검출율 또한 10%에서 최대 30%까지 증가하게 됨을 확인하였다.

R-CNN 기법을 이용한 건물 벽 폐색영역 추출 적용 연구 (Application Research on Obstruction Area Detection of Building Wall using R-CNN Technique)

  • 김혜진;이정민;배경호;어양담
    • 지적과 국토정보
    • /
    • 제48권2호
    • /
    • pp.213-225
    • /
    • 2018
  • 3차원 공간정보 구축을 위해 건물 텍스처를 촬영하는 과정에서 폐색영역 문제가 발생한다. 이를 해결하기 위해선 폐색영역을 자동 인식하여 이를 검출하고 텍스처를 자동 보완하는 자동화 기법 연구가 필요하다. 현실적으로 매우 다양한 구조물 형상과 폐색을 발생시키는 경우가 있으므로 이를 극복하는 대안들이 고려되고 있다. 본 연구는 최근 대두되고 있는 딥러닝 기반의 알고리즘을 이용하여 폐색지역 패턴화하고, 학습기반 폐색영역 자동 검출하는 접근을 시도한다. 영상 내 객체 추출에서 우수한 성과를 발표하는 Convolutional Neural Network (CNN) 기법의 향상된 알고리즘인 Faster Region-based Convolutional Network (R-CNN)과 Mask R-CNN 2가지를 이용하여, 건물 벽면 촬영 시 폐색을 유발하는 사람, 현수막, 차량, 신호등에 대한 자동 탐지하는 성능을 알아보기 위해 실험하고, Mask R-CNN의 미리 학습된 모델에 현수막을 학습시켜 자동탐지하는 실험을 통해 적용이 높은 결과를 확인할 수 있었다.

열화상 영상 데이터 기반 배전반 화재 발생 판별을 위한 딥러닝 모델 설계 (Design of a deep learning model to determine fire occurrence in distribution switchboard using thermal imaging data)

  • 박동준;김민영
    • 문화기술의 융합
    • /
    • 제9권5호
    • /
    • pp.737-745
    • /
    • 2023
  • 본 논문은 열화상 이미지를 활용하여 배전반 화재 발생을 감지하기 위한 인공지능 모델을 개발하는 연구에 대해 다룬다. 연구의 목표는 수집한 열화상 이미지를 전처리하여 객체 탐지 모델에 적합한 데이터로 가공하고, 이를 이용하여 배전반 내 화재 발생 여부를 판단하는 모델을 설계하는 것이다. 연구에서는 AI-HUB의 산업단지 내 학습용 열화상 이미지 데이터를 활용하였으며, CNN 기반 딥러닝 객체 검출 알고리즘 중 대표적인 모델인 Faster R-CNN과 RetinaNet을 사용하여 모델을 구축하고 두 개의 모델을 비교 분석하여 최적의 모델을 제안하고 있다.