• 제목/요약/키워드: Faster RCNN

검색결과 20건 처리시간 0.026초

드론영상을 이용한 물체탐지알고리즘 기반 도로균열탐지 (Road Crack Detection based on Object Detection Algorithm using Unmanned Aerial Vehicle Image)

  • 김정민;현세권;채정환;도명식
    • 한국ITS학회 논문지
    • /
    • 제18권6호
    • /
    • pp.155-163
    • /
    • 2019
  • 본 연구에서는 대전광역시 주요 간선도로인 유성대로를 대상으로 드론을 통해 취득한 노면 영상데이터를 기반으로 물체탐지알고리즘(Object Detection algorithm) 가운데 Tiny-YOLO-V2와 Faster-RCNN을 활용하여 아스팔트 도로노면의 균열을 인식, 균열유형을 구분하고 실험 결과차이를 비교하였다. 분석결과, Faster-RCNN의 mAP는 71%이고 Tiny-YOLO-V2의 mAP는 33%로 측정되었으며, 이는 1stage Detection인 YOLO계열 알고리즘보다 2Stage Detection인 Faster-RCNN 계열의 알고리즘이 도로노면의 균열을 확인하고 분리하는데 더 좋은 성능을 보인다는 것을 확인하였다. 향후, 드론과 인공지능형 균열검지시스템을 이용한 도로자산관리체계(Infrastructure Asset Management) 구축방안 마련을 통해 효율적이고 경제적인 도로 유지관리 의사결정 지원 시스템 구축 및 운영 환경을 조성할 수 있을 것이라 판단된다.

유도형 전력선 통신과 연동된 SSD 기반 화재인식 및 알림 시스템 (SSD-based Fire Recognition and Notification System Linked with Power Line Communication)

  • 양승호;손경락;정재환;김현식
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.777-784
    • /
    • 2019
  • 인적이 드문 한적한 곳이나 산악 지역에서 화재가 발생 하였을 때 화재 상황을 정확하게 파악하고 적절한 초동 대처를 한다면 피해를 최소화할 수 있으므로 사전 화재인지시스템과 자동알림시스템이 요구된다. 본 연구에서는 객체인식을 위한 딥러닝 알고리즘 중 Faster-RCNN 및 SSD(single shot multibox detecter)을 사용한 화재 인식시스템을 전력선 통신과 연동하여 자동알림시스템을 시연하였으며 향 후 고압송전망을 이용한 산불화재 감시에 응용 가능함을 제시하였다. 학습된 모델을 장착한 라즈베리파이에 파이카메라를 설치하여 화재 영상인식을 수행하였으며, 검출된 화재영상은 유도형 전력선 통신망을 통하여 모니터링 PC로 전송하였다. 학습 모델별 라즈베리파이에서의 초당 프레임 율은 Faster-RCNN의 경우 0.05 fps, SSD의 경우 1.4 fps로 SSD의 처리속도가 Faster-RCNN 보다 28배 정도 빨랐다.

Faster-RCNN을 이용한 PCB 부품 인식 (Recognition of PCB Components Using Faster-RCNN)

  • 기철민;조태훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.166-169
    • /
    • 2017
  • 현재 딥러닝을 이용한 연구들이 활발하게 이뤄지고 있고, 많은 분야에서 좋은 결과를 보여주고 있다. PCB(Printed Circuit Board) 기판 위에 실장 된 부품을 인식할 때 템플릿 매칭을 이용한 방식이 주를 이룬다. 하지만 템플릿 매칭은 모양과 방향, 밝기에 따라 여러 템플릿이 존재해야하고, 영상 전체를 탐색하여 매칭하기 때문에 수행시간이 오래 걸린다. 또한 인식률이 상당히 떨어지는 단점이 존재한다. 이로 인해 본 논문에서는 하나의 영상에서 여러 개의 물체를 분류할 때 사용하는 기계학습 방법 중 하나인 Faster-RCNN(Region-based Convolutional Neural Networks)을 이용하여 PCB 부품들을 인식하는 방식을 사용하였으며, 이 방법은 템플릿 매칭 방식보다 수행시간과 인식 면에서 더욱 좋은 성능을 보여준다.

  • PDF

Municipal waste classification system design based on Faster-RCNN and YoloV4 mixed model

  • Liu, Gan;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • 제9권3호
    • /
    • pp.305-314
    • /
    • 2021
  • Currently, due to COVID-19, household waste has a lot of impact on the environment due to packaging of food delivery. In this paper, we design and implement Faster-RCNN, SSD, and YOLOv4 models for municipal waste detection and classification. The data set explores two types of plastics, which account for a large proportion of household waste, and the types of aluminum cans. To classify the plastic type and the aluminum can type, 1,083 aluminum can types and 1,003 plastic types were studied. In addition, in order to increase the accuracy, we compare and evaluate the loss value and the accuracy value for the detection of municipal waste classification using Faster-RCNN, SDD, and YoloV4 three models. As a final result of this paper, the average precision value of the SSD model is 99.99%, the average precision value of plastics is 97.65%, and the mAP value is 99.78%, which is the best result.

Research on Shellfish Recognition Based on Improved Faster RCNN

  • Feng, Yiran;Park, Sang-Yun;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제24권5호
    • /
    • pp.695-700
    • /
    • 2021
  • The Faster RCNN-based shellfish recognition algorithm is introduced for shellfish recognition studies that currently do not have any deep learning-based algorithms in a practical setting. The original feature extraction module is replaced by DenseNet, which fuses multi-level feature data and optimises the NMS algorithm, network depth and merging method; overcoming the omission of shellfish overlap, multiple shellfish and insufficient light, effectively solving the problem of low shellfish classification accuracy. In the complexifier test environment, the test accuracy was improved by nearly 4%. Higher testing accuracy was achieved compared to the original testing algorithm. This provides favourable technical support for future applications of the improved Faster RCNN approach to seafood quality classification.

Faster-RCNN을 이용한 열화상 이미지 처리 및 합성 기법 (Thermal Image Processing and Synthesis Technique Using Faster-RCNN)

  • 신기철;이준수;김주식;김주형;권장우
    • 융합정보논문지
    • /
    • 제11권12호
    • /
    • pp.30-38
    • /
    • 2021
  • 본 논문에서는 열화상 이미지에서의 열 데이터 추출 및 해당 데이터를 사용한 발열 설비 탐지 향상 기법을 제안한다. 주요 목표는 열화상 이미지에서 바이트 단위로 데이터를 해석하여 열 데이터와 실화상 이미지를 추출하고 해당 이미지와 데이터를 합성한 합성 이미지를 딥러닝 모델에 적용하여 발열 설비의 탐지 정확도를 향상 시키는 것이다. 데이터는 한국수력원자력발전소 설비 데이터를 사용하였으며, 학습 모델로는 Faster-RCNN을 사용하여 각 데이터 그룹에 따른 딥러닝 탐지 성능을 비교 평가한다. 제안한 방식은 Average Precision 평가에서 기존 방식에 비해 평균 0.17 향상 되었다.본 연구는 이로서 국가 데이터 기반 열화상 데이터와 딥러닝 탐지의 접목을 시도하여 유효한 데이터 활용도 향상을 이루었다.

시각장애인을 위한 음성안내 네비게이션 시스템의 심층신경망 성능 비교 (Comparison of Deep Learning Networks in Voice-Guided System for The Blind)

  • 안륜희;엄성호;유윤섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.175-177
    • /
    • 2022
  • 본 논문은 시각장애인이 원하는 목적지까지 버스를 이용하여 이동하는 것을 보조하는 시스템 안에 사용될 수 있는 심층신경망에 따라 성능을 비교하였다. 이 시스템은 GPS, 경로 안내 API를 이용하여 현재 위치에서 목적지까지 이르는 경로를 찾고 안내하는 스마트폰 어플리케이션과 임베디드 보드, 심층신경망, 버스정보 API를 이용해 원하는 버스의 탑승 대기시간을 구하고 도착을 감지하는 정거장 설치형 모듈로 이루어져 있다. 정거장 설치형 모듈에 탑승할 버스 번호를 인식하기 위해서 faster-RCNN, YOLOv4, YOLOv5s 세 가지 심층신경망을 적용했고 최상 정확도와 속도면에서 YOLOv5s 심층신경망이 가장 좋은 성능을 보였다.

  • PDF

Equipment and Worker Recognition of Construction Site with Vision Feature Detection

  • Qi, Shaowen;Shan, Jiazeng;Xu, Lei
    • 국제초고층학회논문집
    • /
    • 제9권4호
    • /
    • pp.335-342
    • /
    • 2020
  • This article comes up with a new method which is based on the visual characteristic of the objects and machine learning technology to achieve semi-automated recognition of the personnel, machine & materials of the construction sites. Balancing the real-time performance and accuracy, using Faster RCNN (Faster Region-based Convolutional Neural Networks) with transfer learning method appears to be a rational choice. After fine-tuning an ImageNet pre-trained Faster RCNN and testing with it, the result shows that the precision ratio (mAP) has so far reached 67.62%, while the recall ratio (AR) has reached 56.23%. In other word, this recognizing method has achieved rational performance. Further inference with the video of the construction of Huoshenshan Hospital also indicates preliminary success.

Vehicle Manufacturer Recognition using Deep Learning and Perspective Transformation

  • Ansari, Israfil;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • 제6권4호
    • /
    • pp.235-238
    • /
    • 2019
  • In real world object detection is an active research topic for understanding different objects from images. There are different models presented in past and had significant results. In this paper we are presenting vehicle logo detection using previous object detection models such as You only look once (YOLO) and Faster Region-based CNN (F-RCNN). Both the front and rear view of the vehicles were used for training and testing the proposed method. Along with deep learning an image pre-processing algorithm called perspective transformation is proposed for all the test images. Using perspective transformation, the top view images were transformed into front view images. This algorithm has higher detection rate as compared to raw images. Furthermore, YOLO model has better result as compare to F-RCNN model.

A method based on Multi-Convolution layers Joint and Generative Adversarial Networks for Vehicle Detection

  • Han, Guang;Su, Jinpeng;Zhang, Chengwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.1795-1811
    • /
    • 2019
  • In order to achieve rapid and accurate detection of vehicle objects in complex traffic conditions, we propose a novel vehicle detection method. Firstly, more contextual and small-object vehicle information can be obtained by our Joint Feature Network (JFN). Secondly, our Evolved Region Proposal Network (EPRN) generates initial anchor boxes by adding an improved version of the region proposal network in this network, and at the same time filters out a large number of false vehicle boxes by soft-Non Maximum Suppression (NMS). Then, our Mask Network (MaskN) generates an example that includes the vehicle occlusion, the generator and discriminator can learn from each other in order to further improve the vehicle object detection capability. Finally, these candidate vehicle detection boxes are optimized to obtain the final vehicle detection boxes by the Fine-Tuning Network(FTN). Through the evaluation experiment on the DETRAC benchmark dataset, we find that in terms of mAP, our method exceeds Faster-RCNN by 11.15%, YOLO by 11.88%, and EB by 1.64%. Besides, our algorithm also has achieved top2 comaring with MS-CNN, YOLO-v3, RefineNet, RetinaNet, Faster-rcnn, DSSD and YOLO-v2 of vehicle category in KITTI dataset.