• Title/Summary/Keyword: Fastening Force

Search Result 73, Processing Time 0.026 seconds

Accurate Fastening of Blind Rivet Nuts: A Study (블라인드 리벳 너트 체결 적합성에 관한 연구)

  • Kim, C.;Gu, B.;Yi, S.;Choi, J.M.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.331-337
    • /
    • 2020
  • Blind rivet nuts (BRNs) are increasingly used in automotive industry because unlike conventional bolt fastening, BRN fastening requires access from one side only. Generally, fastening is conducted using automated units, but manual fastening may be resorted to in case of small quantities. Since the fastening direction is not exactly perpendicular to the sheet metal, the BRN axis is tilted with respect to the plate and may result in damage or incomplete fastening. As the tilt angle (clamping angle α) increases, undesired plate deformation occurs and the contact area of the plate with the BRN fastening area decreases, reducing the clamping effect. In this study, the reduction of the clamping effect with the α was investigated to ensure stable fastening force. M6 BRNs were used in the tests. The fastening force was measured as follows: the plate was cut in half through the center of the hole; the BRN was inserted into the hole and fastened; and the clamping angle a was measured (values, 0° ≤ α ≤ 9°). The force leading to the separation of the halves was measured using a universal testing machine (UTM). The maximum α range, in which the fastening force remains stable, was determined. Finite element (FE) analysis confirmed that the fastening force decreases approximately linearly with increasing α. Based on the experiment and FE analysis using various α, the fastening force was found to decrease with α. Further, the maximum tolerance for α that provides secure fastening without damage is suggested.

A Study on the Pulling Force Characteristic of the Reverse Screw for the Metal Fastening Method (Metal Fastening 공법을 위한 Reverse Screw의 견인력 특성에 관한 연구)

  • Kim, Tae-Hyung;Lee, Seong-Wook;Han, Geun-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • The metal fastening method is the new technology to repair cracks in the casting material using specially designed reverse screws. In this study, we conduct the finite element analysis to analyze the pulling force characteristic of a reverse screw, the core component of the metal fastening method, with respect to the change of the applying torque, frictional coefficient and front screw angle. The simplified analysis model with single screw pitch is proposed for convergency of the non-linear contact analysis. As a results, the pulling force of a reverse screw increase in proportion to the applying torque but exponentially decrease according to frictional coefficient. And also we can find the optimum front screw angle with the largest pulling force is $20^{\circ}$.

The Parametric Study on the Performance Characteristics of Elastic Rail Fastening System on the Sharp Curved Track (급곡선 탄성레일체결장치의 거동특성에 미치는 매개변수 연구)

  • Baik, Chan-Ho;Joo, Bong-Gyu;Choi, Jung-Youl;Choi, Il-Yoon;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2163-2173
    • /
    • 2011
  • In this study, the deformations and stresses occurred in the elastic rail fastening system were evaluated according to applied extreme track forces based on various field conditions, track curvature and poor properties. The purpose of this study is to establish a method for efficient management and suggest guide line for track construction in order to secure the performance quality of the elastic rail fastening system on the sharp curved track.. Therefore, initial construction qualities of rail and concrete bed, initial clamping force and applied extreme track forces were used into experiment as several parameters. Using these test results, the performance characteristics of the elastic rail fastening system were also evaluated. As a result, it suggested the method to secure long-term durability of fastening system and comparing sharp curved track to results on field test.

  • PDF

An Experimental Study to Evaluate the Stiffness of Fastening Systems - Translational Stiffness along the Vertical Axis of Rail, Rotational Stiffness along the Strong Axis of Rail - (체결장치의 강성 평가를 위한 실험적 연구 - 레일 연직방향 병진강성, 레일 강축에 대한 회전강성 -)

  • Kim, Jung-Hun;Han, Sang-Yun;Lim, Nam-Hyoung;Kang, Young-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.71-78
    • /
    • 2008
  • In the case of the railway bridges, uplift forces were occurred at the edge of the segments when vehicular loads were applied. These forces caused the compressive and tensile forces in the fastening system. In the past, a structural analysis has been performed to investigate the safety of fastening system which was modeled with one directional spring elements based on the compressive test of fastening system. In this case, the stiffness of the spring element was obtained from experimental study which was conducted by compressive load. Therefore, to perform rational and exact structural analysis, the translational stiffness of the fastening system obtained from the experimental study applied the tensile load and the rotational stiffness should be considered because it was occurred the tensile force as well as the compressive force in fastening system. In this study, an elastic and inelastic experimental study was performed for six specimens. The translational stiffness along the vertical axis of rail and the rotational stiffness along the strong axis of rail were investigated, also structural behavior of the fastening system was analyzed.

An Experimental Study of Fastening System for Analysis of Rail Uplifting on Railway Bridge Ends (철도교량 단부 상향력 해석을 위한 체결장치의 실험적 연구)

  • Kim, Jung-Hun;Lim, Nam-Hyoung;Choi, Sang-Hyun;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.307-311
    • /
    • 2007
  • In the case of the railway bridges, uplift forces were occurred at the edge of the segments when vehicular loads were applied. These forces made the compressive and tensile forces occur in the fastening system. Therefore, the structural analysis was performed to investigate the safety of fastening system which was modeled as one directional spring element. In this case, the stiffness of the spring element was obtained from experimental study which was conducted by compressive load. For that reason, to perform rational and exact structural analysis, the translational stiffness of the fastening system obtained from the experimental study applied the tensile load and the rotational stiffness should be considered because it was occurred the tensile force as well as the compressive force in fastening system. In this study, an elastic and inelastic experimental study was performed for six specimens. The translational stiffness along the vertical axis of rail and the rotational stiffness along the strong axis of rail were investigated. Also structural behavior of the fastening system was analyzed.

  • PDF

Loosening behavior of Internal and External Connection Dental Implants under Cyclic Loads Considering Pre-fastening Force (체결력을 고려한 내부 및 외부연결형 임플란트의 반복 하중에 대한 풀림 연구)

  • Lee, Yongwoo;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.136-143
    • /
    • 2021
  • This paper presents the loosening behavior that occurs after the application of an external load to internal and external connection types of dental implants using the finite element method. We use fastening force between an abutment and a fixture to clamp the dental implant system; however, loosening and breakage may occur owing to cyclic external loads. In this study, we considered the initial fastening condition in the pre-load analysis and then investigated the change in stress and contact surface status when applying external loads. After the application of the initial fastening load, we verified that the internal connection-type model exhibited a relatively lower stress distribution than that of the external connection-type one. Moreover, we found that the former model showed a lower stress concentration after the application of the external load. In addition, after the application of this load, we found that the higher the shear load acting on the implant system, the higher the possibility of loosening. The study results showed the change in stress distribution and contact surface according to the connection type of the dental implants and the phenomenon of loosening by cyclic loads. We expect that the results of this study will be useful for the study of reliability and design of dental implant systems.

The Joining Quality of High Strength Bolt, Nut and Washer Set (S10T & 10.9HRC) under the Surface Treatment Conditions (표면처리별 S10T, 10.9HRC 고장력 볼트 세트의 체결 품질 연구)

  • Choi, Youn-O;Suk, Han-Gil;Hong, Hyeon-Sun
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.3
    • /
    • pp.93-99
    • /
    • 2015
  • This test focuses on the correlations between joining axial force at non-room temperature and at room temperature according to the surface treatment (Geomet, Dacro, Green Kote, Armore Galv.). The quality characteristics of the fastening axial force required by the KSB 2819 and EN14399-10 standards were discussed. Surface treatment was implemented to S10T and 10.9HRC sets of bolts under the same environmental factors. Development for the stabilization of the fastening axial force required by each standard should continually be enforced, and the fastening and storage in the field should be maintained at room temperature. Managing stabilization of torque enumerated data is required after application of surface treatment. It is concluded that, by conducting the test of applying surface treatment to effectively manage, each lot-specific rate of axial force at room temperature conditions should be maintained below the maximum 4.47%. The decline rate of axial force should be maintained under 2.15% maximum, and the standard deviation of the room temperature condition should be maintained below 0.5.

Evaluation of Uplift Forces Acting on Fastening Systems at the Bridge Deck End Considering Nonlinear Behaviors of the Fastening Systems (체결장치 비선형 거동을 고려한 교량 단부에서의 체결장치 압상력 평가)

  • Yang, Sin Chu;Kim, Hak Hyung;Kong, Jung Sik
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.521-528
    • /
    • 2017
  • In this study, vertical loading tests were conducted to investigate the nonlinear behaviors of the fastening systems that have generally been used in the concrete track of domestic railway lines. Nonlinear load-displacement curve models were derived based on the test results. The uplift forces generated in the fastening systems were evaluated by applying the derived nonlinear models as well as the existing linear models. The influence of the factors on the maximum uplift force of the fastening system was analyzed through a parameter study on the distance between neighboring sleepers, the horizontal distance between the center of the bearing and the nearest fastening system from the deck end, and the height of the bridge girder. From the evaluation results it is known that, for economical track and bridge design, due to deck end deformation, it is necessary to consider the nonlinear behavior of the fastening system in the calculation of the uplift force of the fastening systems.