• Title/Summary/Keyword: Fast Switching Circuit

Search Result 103, Processing Time 0.028 seconds

Development of the 120kV/70A High Voltage Switching Circuit with MOSFETs Operated by Simple Gate Drive Unit (120kV/70A MOSFETs Switch의 구동회로 개발)

  • Song In Ho;Shin H. S.;Choi C. H.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.707-710
    • /
    • 2002
  • A 120kV/70A high voltage switch has been installed at Korea Atomic Energy Research Institute in Taejon to supply power with Korea Superconducting Tokamak Advanced Research (KSTAR) Neutral Beam Injection (NBI) system. NBI system requires fast cutoff of the power supply voltage for protection of the grid when arc detected and fast turn-on the voltage for sustaining the beam current. Therefore the high voltage switch and arc current detection circuit are important part of the NBI power supply and there are much need for high voltage solid state switches in NBI system and a broad area of applications. This switch consisted of 100 series connected MOSFETs and adopted the proposed simple and reliable gate drive circuit without bias supply, Various results taken during the commissioning phase with a 100kW resistive load and NBI source are shown. This paper presents the detailed design of 120kV/70A high voltage MOSFETs switch and simple gate drive circuit. Problems with the high voltage switch and gate driver and solutions are also presented.

  • PDF

Coaxial Marx Type Pulse Generator for UWB EM Pulse (UWB 펄스전자파 발생용 원통형 Marx 펄스발생장치개발)

  • Chang, Yong-Moo;Lee, Sang-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.121-121
    • /
    • 2010
  • As the industrial technology is getting higher, the pulsed power technology is required from various fields such as thermonuclear fusion energy sources, military applications, electric power distribution, and a variety of new specialized needs. This technology deals with the generation of very high power electromagnetic pulses through fast switching. We fabricated a pulsed power generator, named EMD pulse generator, by using Marx circuit with 200 kV high, 50 ns fast rise time. In this paper, we described about an effect of stray capacitance of coaxial Marx generator, EPG-AM200k, and a comparing the results of experiments and circuit analysis.

  • PDF

Power Loss Analysis of EV Fast Charger with Wide Charging Voltage Range for High Efficiency Operation (넓은 충전 범위를 갖는 전기 자동차용 급속 충전기의 고효율 운전을 위한 손실 분석)

  • Kim, Dae Joong;Park, Jin-Hyuk;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1055-1063
    • /
    • 2014
  • Power losses of a 1-stage DC-DC converter and 2-stage DC-DC converter are compared in this paper. A phase-shift full-bridge DC-DC converter is considered as 1-stage topology. This topology has disadvantages in the stress of rectifier diodes because of the resonance between the leakage inductor of the transformer and the junction capacitor of the rectifier diode. 2-stage topology is composed of an LLC resonant full-bridge DC-DC converter and buck converter. The LLC resonant full-bridge DC-DC converter does not need an RC snubber circuit of the rectifier diode. However, there is the drawback that the switching loss of the buck converter is large due to the hard switching operation. To reduce the switching loss of the buck converter, SiC MOSFET is used. This paper analyzes and compares power losses of two topologies considering temperature condition. The validity of the power loss analysis and calculation is verified by a PSIM simulation model.

Soft Switching Single Stage AC-DC Full Bridge Boost Converter Using Non-Dissipative Snubber (무손실 스너버 적용 소프트 스위칭 Single Stage AC-DC Full Bridge Boost 컨버터)

  • 김은수;조기연;김윤호;조용현;박경수;안호균;박순구
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.377-383
    • /
    • 1999
  • A new soft switching single stage AC-DC full bridge boost converter with unit input power factor and isolated output i is presented in this paper. Due to the use of a non-dissipative snubber on the primary side, a single stage high-power f factor isolated full bridge boost converter has a significant reduction of switching losses in the main switching devices. The non-dissipative snubber adopted in this study consists of a snubber capacitor Cr, a snubber inductor Cr, a fast r recovery snubber diode Dr' and a commutation diode Dp. This paper presents the complete operating principles, t theoretical analysis and experimental results.

  • PDF

Surge Immunity Performance Enhancement Techniques on Battery Management System (전지관리장치(BMS)의 서지내성 성능향상 기법)

  • Kim, Young-Sung;Rim, Seong-Jeong;Seo, Woohyun;Jung, Jeong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.196-200
    • /
    • 2015
  • The switching noise in the power electronics of the power conversion equipment (Power Conditioning System) for large energy storage devices are generated. Since the burst-level transient noise from being generated in the power system at a higher power change process influences the control circuit of the low voltage driver circuit. Noise may cause the malfunction of the control device even if no dielectric breakdown leads to a control circuit. To overcome this, this paper proposes the installation of an additional nano-surge protection device on the power supply DC output circuit of the battery management unit.

Hybrid Type Structure Design and DLT-Replacement Circuit of the High-Speed Frequency Synthesizer (고속 스위칭 동작의 주파수 합성기를 위한 하이브리드형 구조 설계와 DLT 대체 회로 연구)

  • Lee Hun-Hee;Heo Keun-Jae;Jung Rag-Gyu;Ryu Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.12 s.91
    • /
    • pp.1161-1167
    • /
    • 2004
  • The conventional PLL(phase locked loop) frequency synthesizer takes a long switching time because of the inherent closed-loop structure. The digital hybrid PLL(DH-PLL) which includes the open-loop structure into the conventional PLL synthesizer has been studied to overcome this demerit. It operates in high speed, but the hardware complexity and power consumption are the serious problem because the DLT(digital look-up table) is usually implemented by the ROM which contains the transfer characteristic of VCO(voltage controlled oscillator). This paper proposes a new DH-PLL using a very simple DLT-replacement digital logic instead of the complex ROM-type DLT. Also, a timing synchronization circuit for the very small over-shoot and shorter settling time is designed for the ultra fast switching speed at every frequency synthesis. The hardware complexity gets decreased to about $28\%,$ as compared with the conventional DH-PLL. The high speed switching characteristic of the frequency synthesis process can be verified by the computer simulation and the circuit implementation.

Design of High Efficient Gate Drive Circuit for IGBT (효율적인 IGBT 게이트 드라이브 회로에 관한 연구)

  • Lee, Young-Sik;Kang, Jun-Mo;Kim, Duk-Joong;Beak, Soo-Hyun;Kim, Yong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2213-2216
    • /
    • 1997
  • Efficient Switching of IGBT's requires fast gate drivers with high peak currents. This Paper will review the requirements for effient, reliable gate drive of IGBT's and behaviour of an IGBT switching chacteristcs. The purpose of the present paper is to investigate the switching loss mechanisms in IGBT such as MOSFETs in order to give a support to designers of IGBT gate drive circuits in selecting the more appropriate IGBTs to be used on the basics of design repuirements.

  • PDF

A New Soft Switching Step-Down/Up Converter with Inherent PFC Performance

  • Jabbari, Masoud;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.835-844
    • /
    • 2009
  • In this paper a new buck-boost type DC-DC converter is presented. Its voltage gain is positive, all active elements operate under soft-switching condition independent of loading, magnetic isolation and self output short-circuit protection exist, and very fast dynamic operation is achievable by a simple bang-bang controller. This converter also exhibits appropriate PFC characteristics since its input current is inherently proportional to the source voltage. When the voltage source is off-line, it is sufficient to add an inductor after the rectifier, then near unity power factor is achievable. All essential guidelines to design the converter as a DC-DC and a PFC regulator are presented. Simulation and experimental results verify the developed theoretical analysis.

A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter (위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구)

  • Cho, Han-Jin;Kim, Keun-Young;Lee, Sang-Seok;Kim, Tae-Hwan;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.384-387
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation (PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought must desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

Integrated Current-Mode DC-DC Buck Converter with Low-Power Control Circuit

  • Jeong, Hye-Im;Lee, Chan-Soo;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.235-241
    • /
    • 2013
  • A low power CMOS control circuit is applied in an integrated DC-DC buck converter. The integrated converter is composed of a feedback control circuit and power block with 0.35 ${\mu}m$ CMOS process. A current-sensing circuit is integrated with the sense-FET method in the control circuit. In the current-sensing circuit, a current-mirror is used for a voltage follower in order to reduce power consumption with a smaller chip-size. The N-channel MOS acts as a switching device in the current-sensing circuit where the sensing FET is in parallel with the power MOSFET. The amplifier and comparator are designed to obtain a high gain and a fast transient time. The converter offers well-controlled output and accurately sensed inductor current. Simulation work shows that the current-sensing circuit is operated with an accuracy of higher than 90% and the transient time of the error amplifier is controlled within $75{\mu}sec$. The sensing current is in the range of a few hundred ${\mu}A$ at a frequency of 0.6~2 MHz and an input voltage of 3~5 V. The output voltage is obtained as expected with the ripple ratio within 1%.