• Title/Summary/Keyword: Fast R-CNN

Search Result 24, Processing Time 0.024 seconds

"이거 어디서 사?" - Mask R-CNN 기반 객체 분할을 활용한 패션 아이템 검색 시스템 ("Where can I buy this?" - Fashion Item Searcher using Instance Segmentation with Mask R-CNN)

  • 정경희;최하늘;;김현성;;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.465-467
    • /
    • 2022
  • Mobile phones have become an essential item nowadays since it provides access to online platform and service fast and easy. Coming to these platforms such as Social Network Service (SNS) for shopping have been a go-to option for many people. However, searching for a specific fashion item in the picture is challenging, where users need to try multiple searches by combining appropriate search keywords. To tackle this problem, we propose a system that could provide immediate access to websites related to fashion items. In the framework, we also propose a deep learning model for an automatic analysis of image contexts using instance segmentation. We use transfer learning by utilizing Deep fashion 2 to maximize our model accuracy. After segmenting all the fashion item objects in the image, the related search information is retrieved when the object is clicked. Furthermore, we successfully deploy our system so that it could be assessable using any web browser. We prove that deep learning could be a promising tool not only for scientific purpose but also applicable to commercial shopping.

CutMix 알고리즘 기반의 일반화된 밀 머리 검출 모델 (Generalized wheat head Detection Model Based on CutMix Algorithm)

  • 여주원;박원준
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.73-75
    • /
    • 2024
  • 본 논문에서는 밀 수확량을 증가시키기 위한 일반화된 검출 모델을 제안한다. 일반화 성능을 높이기 위해 CutMix 알고리즘으로 데이터를 증식시켰고, 라벨링 되지 않은 데이터를 최대한 활용하기 위해 Fast R-CNN 기반 Pseudo labeling을 사용하였다. 학습의 정확성과 효율성을 높이기 위해 사전에 훈련된 EfficientDet 모델로 학습하였으며, OOF를 이용하여 검증하였다. 최신 객체 검출 모델과 IoU(Intersection over Union)를 이용한 성능 평가 결과, 제안된 모델이 가장 높은 성능을 보이는 것을 확인하였다.

  • PDF

A Lightweight Pedestrian Intrusion Detection and Warning Method for Intelligent Traffic Security

  • Yan, Xinyun;He, Zhengran;Huang, Youxiang;Xu, Xiaohu;Wang, Jie;Zhou, Xiaofeng;Wang, Chishe;Lu, Zhiyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권12호
    • /
    • pp.3904-3922
    • /
    • 2022
  • As a research hotspot, pedestrian detection has a wide range of applications in the field of computer vision in recent years. However, current pedestrian detection methods have problems such as insufficient detection accuracy and large models that are not suitable for large-scale deployment. In view of these problems mentioned above, a lightweight pedestrian detection and early warning method using a new model called you only look once (Yolov5) is proposed in this paper, which utilizing advantages of Yolov5s model to achieve accurate and fast pedestrian recognition. In addition, this paper also optimizes the loss function of the batch normalization (BN) layer. After sparsification, pruning and fine-tuning, got a lot of optimization, the size of the model on the edge of the computing power is lower equipment can be deployed. Finally, from the experimental data presented in this paper, under the training of the road pedestrian dataset that we collected and processed independently, the Yolov5s model has certain advantages in terms of precision and other indicators compared with traditional single shot multiBox detector (SSD) model and fast region-convolutional neural network (Fast R-CNN) model. After pruning and lightweight, the size of training model is greatly reduced without a significant reduction in accuracy, and the final precision reaches 87%, while the model size is reduced to 7,723 KB.

무인 항공기를 이용한 밀집영역 자동차 탐지 (Vehicle Detection in Dense Area Using UAV Aerial Images)

  • 서창진
    • 한국산학기술학회논문지
    • /
    • 제19권3호
    • /
    • pp.693-698
    • /
    • 2018
  • 본 논문은 최근 물체탐지 분야에서 실시간 물체 탐지 알고리즘으로 주목을 받고 있는 YOLOv2(You Only Look Once) 알고리즘을 이용하여 밀집 영역에 주차되어 있는 자동차 탐지 방법을 제안한다. YOLO의 컨볼루션 네트워크는 전체 이미지에서 한 번의 평가를 통해서 직접적으로 경계박스들을 예측하고 각 클래스의 확률을 계산하고 물체 탐지 과정이 단일 네트워크이기 때문에 탐지 성능이 최적화 되며 빠르다는 장점을 가지고 있다. 기존의 슬라이딩 윈도우 접근법과 R-CNN 계열의 탐지 방법은 region proposal 방법을 사용하여 이미지 안에 가능성이 많은 경계박스를 생성하고 각 요소들을 따로 학습하기 때문에 최적화 및 실시간 적용에 어려움을 가지고 있다. 제안하는 연구는 YOLOv2 알고리즘을 적용하여 기존의 알고리즘이 가지고 있는 물체 탐지의 실시간 처리 문제점을 해결하여 실시간으로 지상에 있는 자동차를 탐지하는 방법을 제안한다. 제안하는 연구 방법의 실험을 위하여 오픈소스로 제공되는 Darknet을 사용하였으며 GTX-1080ti 4개를 탑재한 Deep learning 서버를 이용하여 실험하였다. 실험결과 YOLO를 활용한 자동차 탐지 방법은 기존의 알고리즘 보다 물체탐지에 대한 오버헤드를 감소 할 수 있었으며 실시간으로 지상에 존재하는 자동차를 탐지할 수 있었다.