• 제목/요약/키워드: Faraday efficiency

Search Result 27, Processing Time 0.037 seconds

Prevention of Particulate Scale with a New winding Method in the Electronic Descaling Technology (새 도선 감는 방법을 적용한 전기장 이용 스케일 제거)

  • Son, Chang-Hyeon;Gu, Sang-Mo;Kim, Chang-Su;Kim, Geon-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.658-665
    • /
    • 2002
  • This paper presents a new winding method in electronic descaling (ED) technology. Conventional ED technology Produces an oscillating electric field via Faraday's law to provide the necessary molecular agitation to dissolve mineral ions. However, the proposed method produces an additional agitation force for mineral ions, called Lorentz's force. Experiments were performed using various Renolds numbers. A series of tests was conducted to measure the pressure drop across the test section and the overall heat transfer coefficient as a function of time. In order to accelerate the rate of fouling, artificial hard water, 1000ppm CaCO$_3$, was used throughout the tests. The results show that the new winding method accelerates the collision of the mineral ions, thereby improving the system efficiency. The present study can develope more effective fouling-removing equipment with change of estabishment method of coil.

Mesoporous Carbon Electrodes for Capacitive Deionization (축전식 탈염 공정을 위한 메조포러스 탄소 전극)

  • Lee, Dong-Ju;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.57-64
    • /
    • 2014
  • Carbon electrodes for capacitive deionization were fabricated through mixing two different carbon powders (activated carbon powder, carbon black) with different particle sizes to investigate physical or electrochemical properties and finally desalination performances of the electrodes with various compositions of two carbon powders in weight and were compared with the electrode consisting of activated carbon. As a result, the electrode structure became more packed as increasing the amount of carbon black and resulted in 10% increase in mesopore fraction. The specific capacitance obtained from cyclic voltammograms of various electrodes showed that the electrode containing carbon black only had 107.4 F/g, while the specific capacitance of the electrode having more amount of carbon black increased and was higher than the one having no carbon black. The results of desalination runs in a capacitive deionization cell exhibited that the electrode having the highest amount of carbon black (1 wt%) in this study had the highest desalting efficiency, and no significant pH variation was observed during the runs. It was analyzed using accumulated charge that the fraction of non-Faraday current increased as the amount of carbon black increased in the electrodes. It can be concluded that the addition of carbon black changed the electrode structure resulting in an increase in the fraction of mesopore and finally enhanced the desalting efficiency by decreasing Faraday current.

Combined System of Solar Cell and Fuel Cell (태양광시스템과 연료전지시스템의 통합에 따른 패러데이 효율성)

  • Hwang, Jun-Won;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.122-122
    • /
    • 2009
  • Development of renewable energy is promoted to achieve sustainability. So researchers are seeking and developing a new, clean, safe and renewable energy. Fuel cell energy and solar cell energy are expected to be one of the solutions. The emissions of fuel cell is low, the by-product is low, the by-product is only pure water. This paper presents the efficiency of the hybrid system organized with fuel cell and solar cell in faraday law.

  • PDF

A Study on V-I Characteristics of Hydrogen-Oxygen Gas Generator

  • Yang Seung-Heun;Kang Byoung-Hee;Gho Jae-Soek;Mok Hyung-Soo;Choe Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.109-112
    • /
    • 2001
  • Water-Electrolyzed gas is a mixed gas of the constant volume ratio 2:1 of Hydrogen and Oxygen gained from electrolyzed water, and it has better characteristics in the field of economy, efficiency of energy, and environmental intimacy than acetylene gas and LPG (Liquefied Petroleum Gas) used for existing gas welding equipment. So studies of Water-Electrolyzed gas are activity in progress nowaday, and commercially used as a source of thermal energy for gas welding in the industry. The object of this paper is getting a V-I characteristic of Hydrogen-Oxygen Gas Generator using DC source. First, chemical analysis of electrolysis is conducted and the relation of electrical energy and then chemical energy is investigated through the faraday's laws.

  • PDF

Effects of reflective index of fiber sensor coil end on current measurement (광CT 센서코일 끝단의 반사율이 전류측정에 미치는 영향)

  • Park, Hyoung-Jun;Kim, Hyun-Jin;Song, Min-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.74-77
    • /
    • 2008
  • We improved an efficiency of fiber-optic current transformer by using a metal-coated sensor coil. To reduce the linear birefringence, we used a length of spun fiber as sensor coil, and then used a flint glass fiber coil for comparison. To make the sensor coil in the reflection type, we used different reflection mirrors at the end of the sensor coil, such as a Faraday rotator mirror, a simple mirror, a metal-coated fiber end and a simple fiber end. From the experimental results, the linear error of current measurements were less than ${\sim}$ 0.2 % regardless of the mirror types. The metal-coated sensor was the most cost-effective considering the fabrication cost and the simple structure.

  • PDF

Design Features and Operating Characteristics of the MC-50 Cyclotron (MC-50 싸이클로트론의 설계 특징과 동작 특성)

  • Bak, Hae-Ill;Bak, Joo-Shik
    • Nuclear Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.216-222
    • /
    • 1989
  • The MC-50 cyclotron at Korea Canter Center Hospital is now operational for neutron therapy and medical radioisotope production. Design features, mechanical structures and operating characteristics of the MC-50 are described in this paper. Optimum operating condition for this cyclotron has been determined by the repetitive running, and the performances of the internal beam have been investigated through the measurements of intensity and spatial distribution of the internal beam as a function of the radius of the cyclotron. Routinely, the 40 $\mu$A of 50 MeV protons have been obtained at first Faraday cup with a extraction efficiency of 61%.

  • PDF

Effect of Particle Clogging in Orifices on the Particle Collection Efficiency of a Micro-Orifice Impactor (노즐 막힘이 미세 오리피스형 다단 임팩터의 입자 채취 성능에 미치는 영향)

  • Ji, Jun-Ho;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.197-205
    • /
    • 2003
  • A cascade impactor is a multistage impaction device used to separate airborne particles into aerodynamic size classes. A micro-orifice impactor uses micro-orifice nozzles to extend the cut sizes of the lower stages to as small as 0.05 ${\mu}{\textrm}{m}$ in diameter without resorting to low pressures or creating excessive pressure drops across the impactor stages. In this work, the phenomenon of particle clogging in micro-orifice nozzles was experimentally investigated for a commercial micro-orifice uniform deposit impactor (MOUDI). It was observed, using an optical microscope, that the micro-orifice nozzles of the final stages were partially clogged due to particle deposition during the aerosol sampling. Therefore the pressure drops across the nozzles were higher than the nominal values given by the manufacturer. To examine the effect of particle clogging in micro-orifice nozzles, the particle collection efficiency of the MOUDI was evaluated using an electrical method for fine particles with diameters in the range of 0.1-0.6 ${\mu}{\textrm}{m}$. The monodisperse liquid dioctyl sebacate (DOS) particles were used as test aerosols. A faraday cage was employed to measure the low-level current of the charged particles upstream and downstream of each stage. It was found that the collection efficiency curves shifted to correspond to smaller orifice sizes, and the 50-% cutoff sizes were much smaller than those given by the manufacturer for the three stages with nozzles less than 400 ${\mu}{\textrm}{m}$ in diameter.

Phosphorus Removal from Domestic Sewage by Electrolysis with Aluminium Electrodes (알루미늄의 전기분해를 이용한 오수 중의 인 제거)

  • Cheong, Kyung-Hoon;Choi, Hyung-Il;Jung, Oh-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.70-76
    • /
    • 1999
  • A laboratory experiment was performed to investigate the phosphorus removal using the activated sludge-electrolysis reactor which consisted of A$^2$/O system and aluminium electrodes as cathode and anode. In this system, the phosphorus was removed by aluminium ion, which was eluted from aluminiumelectrodes by electrolysis. In the batch experiments, when the current densities were 0.026, 0.052 and 0.08 A/dm$^2$, the phosphorus removal efficiencies for synthetic sewage were 66.4, 86.4 and 98.7% respectively. These results showed that the phosphorus removal efficiency increased with the increase of the current density. When the current values were 13, 26 and 40 mA respectively, the amounts of Al$^{3+}$ eluted from electrodes according to Faraday's law were 0.049, 0.07 and 0.12 g and Al/P mole ratio were 1.1, 2.0 and 3.41. In the continuous experiments, As hydraulic retention time(HRT) increased, COD and total nitrogen(T-N) removal efficiencies for domestic sewage increased. The average phosphorus removal rates of the activated sludge-electrolysis system were 97, 91, 80 and 80% at the HRT of 48, 24, 18 and 12 hours, respectively. Especially, the phosphorus removal rate in the activated sludge system with aluminium electrodes was higher than that in the system without aluminium electrodes.

  • PDF

Design and Performance Evaluation of a Low Pressure Impactor for Sampling Submicron Aerosols (서브마이크론 입자 측정용 저압 임팩터의 설계 및 성능평가)

  • Ji, Jun-Ho;Cho, Myung-Hoon;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.349-358
    • /
    • 2004
  • A low pressure impactor is an impaction device to separate airborne particles into aerodynamic size classes at low pressure condition. We designed a two-stage low-pressure impactor to classify submicron sized environmental aerosols. Performance evaluation was carried out for stages 1 and 2 by using an electrical method. Monodisperse liquid dioctyl sebacate (DOS) particles were generated using evaporation-condensation process followed by electrostatic classification using a DMA (differential mobility analyzer). The test particles were in the range of 0.08∼0.8$\mu\textrm{m}$. For the evaluation of the impactor we used two electrometers; one was connected to the impaction plate of the impactor and the other was to the Faraday cage used as a backup filter. The effect of polydispersity of test aerosols on the performance was investigated. The results showed that the experimental 50-% cutoff diameters at each impactor's operation pressure were 0.53 and 0.187$\mu\textrm{m}$ for stages 1 and stage 2, respectively. The effects of operation pressure on the cutoff diameter and the steepness of collection efficiency curves were also investigated.

Study on Vibration Energy Harvesting with Small Coil for Embedded Avian Multimedia Application

  • Nakada, Kaoru;Nakajima, Isao;Hata, Jun-ichi;Ta, Masuhisa
    • Journal of Multimedia Information System
    • /
    • v.5 no.1
    • /
    • pp.47-52
    • /
    • 2018
  • We have developed an electromagnetic generator to bury in subcutaneous area or abdominal cavity of the birds. As we can't use a solar battery, it is extremely difficult to supply a power for subcutaneous implantation such as biosensors under the skin due to the darkness environment. We are aiming to test the antigen-antibody reaction to confirm an avian influenza. One solution is a very small generator with the electromagnetic induction coil. We attached the developed coil to chickens and pheasants and recorded the electric potential generated as the chicken walked and the pheasant flew. The electric potential generated with physical simulator is equal to or exceeds the 7 V peak-to-peak at maximum by 560/min of flapping of wings. Even if we account for the junction voltage of the diode (200 mV), efficient charging of the double-layer capacitor is possible with the voltage doubler rectifier. If we increase the voltage, other problems arise, including the high-voltage insulation of the double-layer capacitor. For this reason, we believe the power generated to be sufficient for subcutaneous area of birds. The efficiency, magnetic 2 mm in length and coil 15mm in length, if axial direction is rectified, the magnetic flux density given to the coil could calculated to 7.1 % and generated power average 0.47mW. The improvements in size and wire insulation are expected in the future.