• Title/Summary/Keyword: Far infrared rays

Search Result 47, Processing Time 0.02 seconds

Hay Preparation Technology for Sorghum×Sudangrass Hybrid Using a Stationary Far-Infrared Dryer (정치식 원적외선 건조기를 이용한 수수×수단그라스 교잡종의 건초 조제 기술 연구)

  • Jong Geun Kim;Hyun Rae Kim;Won Jin Lee;Young Sang Yu;Yan Fen Li;Li Li Wang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.1
    • /
    • pp.22-27
    • /
    • 2023
  • This experiment was conducted to confirm the possibility of preparing Sorghum×sudangrass hybrid artificial hay using far-infrared rays in Korea. The machine used in this experiment is a drying device based on far-infrared rays, and is designed to control temperature, air flow rate, far-infrared radiation amount, and air flow speed. The Sorghum×sudangrass hybrids harvested in late September were wilted in the field for one day, and a drying test was performed on them. Conditions for drying were performed by selecting a total of 7 conditions, and each condition induced a change in radiation amount in a single condition (42%) and two steps (4 treatments) and three steps (2 treatments). The speed of the air flow in the device was fixed at 60 m/s, and the run time was changed to 30, 60, and 90 minutes. The average dry matter (DM) content was 82.84%. The DM content was 59.94 and 76.91%, respectively, in drying conditions 1 and 3, which were not suitable for hay. In terms of drying rate, it was significantly higher than 80% in the 5, 6 and 7 treatment, and power consumption was slightly high with an average of 5.7 kw/h. As for the feed value according to each drying condition, the crude protein (CP) content increased as the drying time increased, and there was no significant difference between treatments in ADF, NDF, IVDMD and TDN content. In terms of RFV, treatment 1, which is a single condition, was significantly lower than the complex condition. Through the above results, it was determined that the drying conditions 4 and 5 were the most advantageous when considering the drying speed, power consumption, and quality.

The Effect of Far-Infrared Irradiation on Functional Components of Grape Seed (원적외선 처리가 포도씨의 기능성분에 미치는 영향)

  • Lee, Jihyun;Baek, Jiyoung;Yoon, Sung-Ran;Kwon, Joong-Ho
    • Current Research on Agriculture and Life Sciences
    • /
    • v.28
    • /
    • pp.53-62
    • /
    • 2010
  • The effect of far-infrared (FIR) irradiation on the functional compounds of grape seeds extract were evaluated. Grape seed was dried on different heating power (0, 900, 1800 W) and heating time (0, 20, 40 min) with far-infrared drier. Contents of soluble solids, catechins, total phenolics and total flavonoids along with Hunter's color value, electron donating ability (EDA) and nitrite scavenging activity were analyzed. The soluble solids, Hunter's L value and a value were not significantly different from control samples. Cathechin, procyanidin $B_2$ and epicatechin contents changed with heating time. In the treated sample, total cathechins content was found maximum at 900 W of heating power and 20 min of heating time with a high level of total phenolics, total flavonids and EDA. These results indicated that FIR irradiation of grape seed could enhance antioxidant activities of its extracts by increasing the amounts of functional compounds. Moreover, response surface methodology(RSM) was applied to predict optimum conditions for heating by FIR rays of grape seeds. Based on superimposition of contour map with respect to total phenolics, total catechin and EDA, optimum ranges of heating conditions were heating power of 621.82~818.18 W and heating time of 16.3~19.83 min.

  • PDF

Stimulation of Blood Flow Needs a Parallel Magnetic Field and Psycho-physics acupuncture

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.105-112
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, fur examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-l4}$m and then the converging $\pi$-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion, because of the $\pi$-rays' hindrances, near the nucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. Any magnet absorbs n-rays to S pole and sends out the $\pi$-rays from N pole. Proton are constructed with the closed n-rays quantum-mechanically. The crystallizing n-bonding makes two $\pi$-far infrared rays of one wave length between two protons if two $\pi$-rays are supplied to each proton. It is easily done for a $\pi$-ray to be absorbed to a proton if there is a parallel magnetic flow to the blood flow because a $\pi$-ray advances axially under a magnetic field and a proton looks like a sphere. A axially advancing disk-like $\pi$-ray can meet more easily the coming spheres than from the other directions. The blood crystals stimulate the autonomous nerves on the blood vessels during the flow by their mechanical sliding collisions. SM n-ray meridian therapy and SMACN $\pi$-ray meridian therapy show the stimulation of blood flow and also combinational experiment between SM $\pi$-ray meridian therapy and n-ray psycho-physics acupuncture shows more clearly that magnet is forcing to make $\pi$-rays absorbed to the nucleons.s.ons.

  • PDF

A Fundamental Physical Properties of Wood with Charcoal and Loess (목탄과 황토함유 목질소재의 기초물성)

  • Lee, Wun-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.2
    • /
    • pp.49-56
    • /
    • 2006
  • This research was carried out to examine the FIR (far-infrared rays) emissivity and emission power of five types of flooring board by the mixing ratio of charcoal and loess, and the physical property of five types of injected flooring board by the amount of mixture. Type D was appeared the most high value of FIR emissivity and emission power. But there was a little difference among the five types of flooring board values. In physical properties, control type flooring board and injected flooring board showed a similar tendency. Among the domestic trees, all of hard wood seems to be used to surface wood for strong hardness flooring board. But a coniferous tree was not.

  • PDF

An Experimental Study on the Properties of Hwangtoh Mortar for the Application of Construction Material (건축적 적용을 위한 황토모르터의 물성에 관한 실험적 연구)

  • Lee, Hyun-Chul;Lee, Gun;Go, Seong-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.43-46
    • /
    • 2006
  • The Hwangtoh is one of the traditional construction material used in wall, plastering material, and ondol (Korean underfloor heating system) with stone and wood. It is an important greenness material and it has much advantages such as; high storage of heat, auto-purification, antibiotic ability, and emission of far infrared rays. But, it is not developed and not used in modern construction because of its low strength and properties of dry shrinkage crack. According to the recent researches and studies, it is evaluated for natural pozzolanic material like flyash or pozzolan. It's possibility on construction material is high because it's chemical and mineralogical proportion is like as Metakaolin and Kaolinite. In this point of view, this study aims to analyze the physical properties on Hwangtoh mortar through an experiment with various activation condition of Hwangtoh, which is natural pozzolanic material, for the purpose of increase the using possibility in construction material.

  • PDF

Physics on cancer and its curing

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.91-97
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-l4}$m and then the converging n-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion because of the n-rays' hindrances, near the nucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. An understanding of the mechanisms responsible for the control of normal proliferation and differentiation of the various cell types which make up the human body will undoubtedly allow a greater insight into the abnormal growth of cells, A large body of biochemical evidence was eventually used to generate a receptor model with an external ligand binding domain linked through a single trans-membrane domain to the cytoplasmic tyrosine kinase and autophosphory-lation domains. The ligand induced conformational change in the external domain generates either a push-pull or rotational signal which is transduced from the outside to the inside of cell.l.ell.

  • PDF

Autonomic Nerve Change after Loess Bedding Radiating Far-infrared ray and energy (원적외선에너지 방출 황토침구 사용 후의 자율신경 변화에 대한 연구)

  • Lee, Ku Yeon;Lee, Hyung H.;Hahm, Suk Chan
    • Journal of Naturopathy
    • /
    • v.9 no.1
    • /
    • pp.27-32
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the changes in the autonomic nervous system of the human body after the use of ocher bedding radiating far-infrared rays to 15 insomnia subjects. Methods: Changes of autonomous nerve in the subjects after using loess bedding estimated by heart rate variability. Results: The mean HF before the use of ocher bedding was 220.8 msec2, and the mean after use decreased to 5.1 msec2. The average value of LF before use was 418.1 msec2, and the mean after use decreased to 5.2 msec2. The average before use of the VLF was 1463.3 msec2, and the average after use dropped to 6.8 msec2. The average value of TP before use was 977.3 msec2, and the average after use dropped to 6.7 msec2. The decrease in postoperative values of all four items was statistically significant, and the high value of the subjects before use inferred to be the reason that all of the subjects had high stress and anxiety due to their long-term sleep disorder. There was no significant difference in the pulses of the subjects before the use of the bedding. SDNN and RMSSD were not significantly different before and after use. Conclusions: Autonomic nerves HF, LF, VLF, TP frequency is evaluated to be affected by the investigation of far-infrared radiation that occurs ocher. This research data regarded as high value as primary data in this field.

A Study on the Development of Uniform Design by Using the Hanji Thread Fabric - Focusing on the Music Hall Uniform - (한지사 직물을 이용한 유니폼 디자인 개발에 관한 연구 - 음악홀 유니폼을 중심으로 -)

  • Beom, Seo-Hee;Lee, Hyun-Og;Shon, Young-Mi
    • Fashion & Textile Research Journal
    • /
    • v.12 no.2
    • /
    • pp.149-155
    • /
    • 2010
  • The advanced and complicated modern society recognizes image creation based on the identity of the global competitive age as the important means. The requirement for a new vision to the globally environmental problem has affected on design so that as environmentally-friendly products and technologies have been developed and original expression modes have been appeared which the medium of paper which is natural material, paper has been highlighted newly. Hanji made of mulberry fiber, a bast fiber of mulberry is a representative environment-friendly natural fiber. In addition, it has various functions similar to those of yellow earth such as emission of far infrared rays, antibiosis, deodorization, fast dry ability of sweat, and simple dyeing ability. It is Hanji threads that are produced from various processes of Hanji materials. Therefore, hanji threads are able to be both woven and knitted still remaining Hanji's excellent characteristics. In addition, it is light, bio-degradable, durable and washable, and it is an environment friendly product with the distinguished texture and sensitivity. Under the concept of 'Circle' designed the uniforms of music hall to inform that the uniforms as a media representing music hall represents the unique Sori Arts Center of Jeollabuk-do traditional style.

A characteristics study on the Second-harmonic generation conversion efficiency of Pulsed Nd:YAG Laser adopted Superposition multiple Mesh Networks (중첩다단 메쉬회로를 적용한 펄스형 Nd:YAG 레이저의 2차 고조파 변환효율에 관한 특성연구)

  • 김휘영
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.4
    • /
    • pp.565-572
    • /
    • 2001
  • At the most recent years, laser medical instruments, laser applications and laser nuclear fusion need strong visible light and ultraviolet rays. Nonlinear optical devices, such as harmonic generators and parametric oscillators, provide a means of extending the frequency range of available laser sources. Frequency conversion is a useful technique for extending the utility of high-power lasers. It utilizes the nonlinear optical response of an optical medium in intense radiation fields to generate new frequencies. These progresses have been used to generate high-power radiation in all spectral regions, from the ultraviolet to the far infrared. Optical parametric oscillators and amplifiers generate two waves of lower frequency They are capable of generating a range of wavelengths from a single frequency source, in some cases spanning the entire visible and near infrared regions. Consequently, in order to obtain the green light, the pulsed Nd:YAG laser using multiple-mesh PFN(Pulsed Forming Network) method with Nonlinear optical device was adopted. We compared the current pulseshapes with the laser output energy, and conversion efficiency.

  • PDF

A Study on the Fabrication of Surface Heating Panel Using SiC Ceramics (SiC계 세라믹을 이용한 면상발열 판넬 개발에 관한 연구)

  • Cho, Hyun-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.604-608
    • /
    • 2016
  • In recent years, research and development has been carried out in order to increase the economical efficiency and stability in terms of efficient use of energy for the heating apparatus. Especially, technology development for high performance and new functional materials is actively being carried out. This paper focuses on the development of exothermic products with excellent energy transfer characteristics. The heating element used for bedding or mattress uses a heating wire. Since the heating wire is thin, the distribution of heat is concentrated only around the heating wire,. In addition, electromagnetic induction is harmful to the human body and energy consumption is high. Therefore, it is aimed to develop a planar heating panel using SiC ceramics which can radiate far-infrared rays and anions to be harmless to the human body, but also has excellent heat conduction to enhance energy efficiency.