• Title/Summary/Keyword: Fan noise

Search Result 477, Processing Time 0.025 seconds

An Experimental study on the Broadband Noise Generation in Axial Flow Fan (축류팬에서의 광대역소음 발생에 대한 실험적 연구)

  • Rhee, Wook;Choi, Jong-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.91-96
    • /
    • 1998
  • The broadband noise generated aerodynamically from a two-bladed axial flow fan has been measured and compared to the result of a self-noise prediction method. The prediction scheme is based on the experimental data set acquired from a series of aerodynamic and acoustic tests of two and three-dimensional airfoil blade sections. For low blade loading case the comparison showed a reasonably good agreement, but as the loading becomes larger the empirical formula overpredict the sound pressure level at high frequency range. This is probably due to the use of stationary wing data for the prediction of rotating blade case, which will be quite different in their vortex strength at the blade tip.

  • PDF

Sound Characteristics and Performance of Helicopter Anti-Torque System (헬리콥터 반토오크 시스템 성능 및 소음특성)

  • Lee, Je-Dong;Song, Keun-Woong;Chung, Ki-Hoon;Kang, Hee-Jung;Kim, Seung-Bum
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.690-695
    • /
    • 2006
  • This paper described the Performance test and sound characteristics of helicopter 'Tail-Fan' anti-torque system. In this research, Korea Aerospace Research Institute(KARI) developed 'Tail-Fan' anti-torque system for a helicopter and carried out performance and sound capturing tests of even and uneven tail fans. The performance test is carried out and the noise signals which are generated during the test are saved with microphones at the same time. The performance test's results meet the design requirements. Tone-corrected perceived noise level is reduced by replacing the even product with the uneven one.

  • PDF

Optimal Placement of Strain Gauge for Vibration Measurement for Fan Blade (블레이드 진동측정을 위한 스트레인 게이지 설치위치 최적화)

  • Choi ByeongKeun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.819-826
    • /
    • 2004
  • A multi-step optimum strategy for the selection of the locations and directions of strain gauges is proposed in this paper to capture at best the modal response of blade in a series of modes on fan blades. It is consist of three steps including two pass reduction step, genetic algorithm and fine optimization to find the locations-directions of strain gauges. The optimization is based upon the maximum signal-to-noise ratio(SNR) of measured strain values with respect to the inherent system measurement noise, the mispositioning of the gauge in location and gauge failure. Optimal gauge positions for a fan blade is analyzed to prove the effectiveness of the multi-step optimum methodology and to investigate the effects of the considering parameters such as the mispositioning level, the probability of gauge failure, and the number of gauges on the optimal strain gauge position.

Sound Characteristics and Performance of Even and Uneven Blade Spacing Helicopter Anti-Torque System (균등 및 비균등 배열 헬리콥터 반토오크 시스템 성능 및 소음특성)

  • Song, Keun-Woong;Chung, Ki-Hoon;Kang, Hee-Jung;Kim, Seung-Bum;Lee, Je-Dong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.857-863
    • /
    • 2006
  • This paper described the performance test and sound characteristics of helicopter 'Tail-Fan' anti-torque system. In this research, Korea Aerospace Research Institute(KARI) developed 'Tail-Fan' anti-torque system for a helicopter and carried out performance and sound capturing tests of even and uneven tail fans. The performance test is carried out and the noise signals which are generated during the test are saved with microphones at the same time. The performance test's results meet the design requirements. Tone-corrected perceived noise level is reduced by replacing the even product with the uneven one.

A Study on the Vibration Phenomena of the Duct-fan Systems in Fossil Fueled Boilers : Inlet Vortex Induced Excessive Vibration (화력 발전용 보일러 덕트-홴 시스템의 진동현상에 대한 연구 : 입구측 와류에 의한 과대진동 사례)

  • 김철홍;주영호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.194-201
    • /
    • 2003
  • During the operation, fatigue failures and cracks of duct plate due to excessive duct vibration occurred in a fan-duct system of fossil fueled boilers. We measured static pressure variation (pressure pulsation) in the outlet, and also measured vibration at the outlet duct of a centrifugal fan. It was found that strong pressure pulsation caused by the inlet vortex occurred in inlet vane of centrifugal fan in the middle range of vane opening. Thus, excessive duct vibration is caused by strong pressure pulsation. In this Paper, it is shown that the frequency and amplitude of pressure pulsation depend mainly on vane opening and are compared with duct vibration. Also, effective solution for reducing pressure pulsation and vibration are presented.

A Numerical Study on the Generation of Aeroacoustic Sound from Centrifugal Fans (청소기용 터보홴의 공력소음 발생에 관한 수치적 연구)

  • Jeon, Wan-Ho;Kim, Chang-Joon;Rew, Ho-Seon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.69-75
    • /
    • 2001
  • A new method to calculate the aeroacoustic pressure of a centrifugal fan was developed The fan consists of an impeller, diffuser and circular casing. Due to the high rotating velocity and the small gap between the impeller and diffuser, the centrifugal fan makes very high noise level at BPF and its harmonic frequencies. The aeroacoustic pressure is calculated acoustic analogy In this paper, only dipole term is considered in the equation. The acoustics generated by moving impeller and stationary diffuser is calculated separately. The unsteady flow field data is calculated by the vortex method The predicted acoustic pressure agrees very well to the measured data. The difference of the two is smaller than 3dBA.

  • PDF

A Study on Aerodynamic and Noise Characteristics of a Sirocco Fan for Residential Ventilation (주거환기용 시로코홴의 공력 및 소음 특성 연구)

  • Kim, Jin-Hyuk;Song, Woo-Seog;Lee, Seung-Bae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.18-23
    • /
    • 2010
  • This paper presents a procedure for the aerodynamic and aeroacoustic characteristics of a sirocco fan. For the aerodynamic and aeroacoustic analyses of the sirocco fan, three-dimensional steady and unsteady Reynolds-averaged Navier-Stokes equations are solved with a shear stress transport turbulence model for turbulence closure. The flow analyses were performed on a hexahedral grid using a finite-volume solver. The validation of the numerical results is performed by comparing with experimental data for the pressure, efficiency and power. The internal flow analyses of the sirocco fan are performed to understand the unstable flow phenomenon on the casing for the wall pressure and internal flow characteristics at each position. It was found that fluctuation of pressure and locally concentrated noise source are observed near the cut-off and expansion regions of the casing.

Unsteady Flow Characteristics of an Axial Flow Fan Installed in the Outdoor Unit of Air Conditioner (에어콘 실외기용 축류송풍기의 비정상 유동장 특성 연구)

  • Jang, Choon-Man
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.223-230
    • /
    • 2005
  • The unsteady nature of vortex structures has been investigated by a large eddy simulation (LES) in an axial flow fan with a shroud covering only the rear region of its rotor tip. The simulation shows that the tip vortex plays a major role in the structure and unsteady behavior of the vortical flow in the fan. The movements of the vortex structures induce high-pressure fluctuations on the rotor blade and in the blade passage. Frequency characteristics of the fluctuating pressure on the rotor blade are analyzed using wavelet transform. The dominant frequency of the real-time pressure selected at the high pressure fluctuation region corresponds well to that of the fluctuating rotor torque and the experimental result of fan noise. It is mainly generated due to the unsteady behavior of the vortical flow, such as the tip vortex and the leading edge separation vortex.

  • PDF

Conceptual Design of a Ducted Fan for Helicopter Anti-Torque System

  • Hwang, Chang-Jeon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.89-96
    • /
    • 2005
  • Ducted fans have advantages in noise as well as operational safety aspects compared to conventional tail rotors and are used as an anti-torque system for various classes of helicopters. The final goal of this study is to develop a ducted fan anti-torque system which can replace conventional tail rotors of existing helicopters to achieve safety enhancement and low noise level. In this paper, a conceptual design process and the results are described. Initially, the design requirement and the design parameter characteristics are analysed, and then initial sizing and configuration design are performed. There are several configuration changes due to specific technical reasons in each case. Finally, the required power and the pitch link load are predicted as an initial estimation. The conceptual design technique for the ducted fan in this study can be easily applied to the design of other ducted fans such as the lift fan for unmanned aerial vehicle.

Analysis of Wake and Noise of a Fan in Finite Duct (유한관내에서 축류팬 후류 및 해석)

  • Chung, Ki-Hoon;Choi, Han-Lim;Na, Seon-Uk;Jeon, Wan-Ho;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.100-105
    • /
    • 2000
  • The present work describes the prediction method for the unsteady flow field and the acoustic pressure field of a ducted axial fan. The prediction method is comprised of time-marching free-wake method, acoustic analogy. and the Helmholtz-Kirchhoff BEM. The predicted sound signal of a rotor is similar to the experiment one. We assume that the rotor rotates with a constant angular velocity and the flow field around the rotor is incompressible and inviscid. Then, a time-marching free-wake method is used to model the fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lawson's method is used to predict the acoustic source. The newly developed Helmholtz-Kirchhoff BEM for thin body is used to calculate the sound field of the ducted fan. The ducted fan with 6 blades is analysed and the sound field around the duct is calculated.

  • PDF